Algebraic independence results for reciprocal sums of Fibonacci and Lucas numbers

被引:0
|
作者
Stein, Martin [1 ]
机构
[1] FHDW Hannover, D-30173 Hannover, Germany
关键词
algebraic independence; Fibonacci numbers; elliptic functions;
D O I
10.1063/1.3630045
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let F(n) and L(n) denote the Fibonacci and Lucas numbers, respectively. D. Duverney, Ke. Nishioka, Ku. Nishioka and I. Shiokawa proved that the values of the Fibonacci zeta function zeta(F)(2s) = Sigma(infinity)(n=1) F(n)(-2s) are transcendental for any s is an element of N using Nesterenko's theorem on Ramanujan functions P(q), Q(q), and R(q). They obtained similar results for the Lucas zeta function zeta(L) (2s) = Sigma(infinity)(n=1) L(n)(-2s) and some related series. Later, C. Elsner, S. Shimomura and I. Shiokawa found conditions for the algebraic independence of these series. In my PhD thesis I generalized their approach and treated the following problem: We investigate all subsets of {Sigma(infinity)(n=1) 1/F(n)(2s1), Sigma(infinity)(n=1) (-1)(n+1)/F(n)(2s2), Sigma(infinity)(n=1) 1/L(n)(2s3), Sigma(infinity)(n=1) (-1)(n+1)/F(n)(2s4) : s(1), s(2), s(3), s(4) is an element of N} and decide on their algebraic independence over Q. Actually this is a special case of a more general theorem for reciprocal sums of binary recurrent sequences.
引用
收藏
页码:101 / 107
页数:7
相关论文
共 50 条
  • [1] Algebraic independence results for reciprocal sums of Fibonacci numbers
    Elsner, Carsten
    Shimomura, Shun
    Shiokawa, Iekata
    [J]. ACTA ARITHMETICA, 2011, 148 (03) : 205 - 223
  • [2] Exceptional algebraic relations for reciprocal sums of Fibonacci and Lucas numbers
    Elsner, Carsten
    Shimomura, Shun
    Shiokawa, Iekata
    [J]. DIOPHANTINE ANALYSIS AND RELATED FIELDS 2011 (DARF 2011), 2011, 1385 : 17 - +
  • [3] ALGEBRAIC INDEPENDENCE OF MODIFIED RECIPROCAL SUMS OF PRODUCTS OF FIBONACCI NUMBERS
    Tanaka, Taka-aki
    [J]. TSUKUBA JOURNAL OF MATHEMATICS, 2006, 30 (02) : 341 - 357
  • [4] LINEAR INDEPENDENCE RESULTS FOR SUMS OF RECIPROCALS OF FIBONACCI AND LUCAS NUMBERS
    Duverney, D.
    Suzuki, Y.
    Tachiya, Y.
    [J]. ACTA MATHEMATICA HUNGARICA, 2020, 162 (01) : 375 - 392
  • [5] Linear independence results for sums of reciprocals of Fibonacci and Lucas numbers
    D. Duverney
    Y. Suzuki
    Y. Tachiya
    [J]. Acta Mathematica Hungarica, 2020, 162 : 375 - 392
  • [6] On the Reciprocal Sums of Products of Fibonacci and Lucas Numbers
    Choi, Ginkyu
    Choo, Younseok
    [J]. FILOMAT, 2018, 32 (08) : 2911 - 2920
  • [7] ALGEBRAIC INDEPENDENCE OF RECIPROCAL SUMS OF POWERS OF CERTAIN FIBONACCI-TYPE NUMBERS
    Bundschuh, Peter
    Vaananen, Keijo
    [J]. FUNCTIONES ET APPROXIMATIO COMMENTARII MATHEMATICI, 2015, 53 (01) : 47 - 68
  • [8] Algebraic relations for reciprocal sums of Fibonacci numbers
    Elsner, Carsten
    Shimomura, Shun
    Shiokawa, Iekata
    [J]. ACTA ARITHMETICA, 2007, 130 (01) : 37 - 60
  • [9] Algebraic independence of sums of reciprocals of the Fibonacci numbers
    Nishioka, K
    Tanaka, A
    Toshimitsu, T
    [J]. MATHEMATISCHE NACHRICHTEN, 1999, 202 : 97 - 108
  • [10] LINEAR INDEPENDENCE RESULTS FOR THE RECIPROCAL SUMS OF FIBONACCI NUMBERS ASSOCIATED WITH DIRICHLET CHARACTERS
    Ei, Hiromi
    Luca, Florian
    Tachiya, Yohei
    [J]. STUDIA SCIENTIARUM MATHEMATICARUM HUNGARICA, 2017, 54 (01) : 61 - 81