Review of empirical modelling techniques for modelling of turning process

被引:30
|
作者
Garg, Akhil [1 ]
Bhalerao, Yogesh [2 ]
Tai, Kang [1 ]
机构
[1] Nanyang Technol Univ, Sch Mech & Aerosp Engn, 50 Nanyang Ave, Singapore 639798, Singapore
[2] MIT Acad Engn, Dept Mech Engn, Pune 412105, Maharashtra, India
关键词
empirical; modelling; turning; artificial neural network; ANN; review; regression; analysis; genetic programming; support vector machines; SVM;
D O I
10.1504/IJMIC.2013.056184
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The most widely and well known machining process used is turning. The turning process possesses higher complexity and uncertainty and therefore several empirical modelling techniques such as artificial neural networks, regression analysis, fuzzy logic and support vector machines have been used for predicting the performance of the process. This paper reviews the applications of empirical modelling techniques in modelling of turning process and unearths the vital issues related to it.
引用
收藏
页码:121 / 129
页数:9
相关论文
共 50 条
  • [1] Modelling and simulation of the turning process
    Abdul-Ameer, AA
    Farshidianfar, A
    Ebrahimi, M
    [J]. LASER METROLOGY AND MACHINE PERFORMANCE VI, 2003, : 171 - 180
  • [2] EMPIRICAL MODELLING OF CUTTING FORCE COMPONENTS IN TURNING
    Oleg, Ryabov
    Kano, Seisuke
    Sawada, Hiroyuki
    Herwan, Jonny
    [J]. PROCEEDINGS OF THE 2018 IEEE INTERNATIONAL CONFERENCE ON ADVANCED MANUFACTURING (IEEE ICAM), 2018, : 7 - 10
  • [3] A dynamic modelling and simulation of cutting process in turning
    Moughith, WSE
    Abdul-Ameer, AA
    Khanipour, A
    [J]. MULTIBODY DYNAMICS: MONITORING AND SIMULATION TECHNIQUES - III, 2004, : 475 - 484
  • [4] A Review on Battery Modelling Techniques
    Tamilselvi, S.
    Gunasundari, S.
    Karuppiah, N.
    Rk, Abdul Razak
    Madhusudan, S.
    Nagarajan, Vikas Madhav
    Sathish, T.
    Shamim, Mohammed Zubair M.
    Saleel, C. Ahamed
    Afzal, Asif
    [J]. SUSTAINABILITY, 2021, 13 (18)
  • [5] Semi-empirical process modelling with integration of commercial modelling tools
    Schopfer, G
    Kahrs, O
    Marquardt, W
    Warncke, M
    Mrziglod, T
    Schuppert, A
    [J]. European Symposium on Computer-Aided Process Engineering-15, 20A and 20B, 2005, 20a-20b : 595 - 600
  • [6] Empirical modelling of contagion:: a review of methodologies
    Dungey, M
    Fry, R
    González-Hermosillo, B
    Martin, VL
    [J]. QUANTITATIVE FINANCE, 2005, 5 (01) : 9 - 24
  • [7] Multiphase process modelling by tomographic techniques
    Ni, XF
    Simons, SJR
    Williams, RA
    Jia, X
    [J]. PROCEEDINGS OF THE 1997 AMERICAN CONTROL CONFERENCE, VOLS 1-6, 1997, : 3273 - 3274
  • [8] Analysis of business process modelling techniques
    Kundelien, Kristina
    [J]. 4TH INTERNATIONAL SCIENTIFIC CONFERENCE BUSINESS AND MANAGEMENT'2006/THE 14TH INTERNATIONAL SCIENTIFIC CONFERENCE ENTERPRISE MANAGEMENT: DIAGNOSIS, STRATEGY, EFFICIENCY, 2007, : 344 - 349
  • [9] A Comparative of business process modelling techniques
    Tangkawarow, I. R. H. T.
    Waworuntu, J.
    [J]. INTERNATIONAL CONFERENCE ON INNOVATION IN ENGINEERING AND VOCATIONAL EDUCATION, 2016, 128
  • [10] MODELLING OF PROCESS FORCES FOR COMPLEX MULTIAXIAL TURNING PROCESSES
    Denkena, B.
    Kroedel, A.
    Ellersiek, L.
    Zender, F.
    [J]. MM SCIENCE JOURNAL, 2021, 2021 : 5023 - 5029