NUMERICAL INVESTIGATION OF A NONLOCAL SINE-GORDON MODEL

被引:27
|
作者
VAZQUEZ, L
EVANS, WAB
RICKAYZEN, G
机构
[1] UNIV KENT,PHYS LAB,CANTERBURY CT2 7NR,KENT,ENGLAND
[2] UNIV COMPLUTENSE,FAC CIENCIAS FIS,DEPT FIS TEOR,E-28040 MADRID,SPAIN
关键词
D O I
10.1016/0375-9601(94)91209-2
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A conservative, non-local generalisation of the sine-Gordon equation is postulated and its kink solutions are numerically investigated by integral equation methods. It is found that, as a consequence of non-locality, the usual kink solutions of topological charge 1 attract each other forming dynamically stable multi-twist kinks of odd parity. Further, novel solutions, of topological charge 0, were also found to exist at adequately large non-locality.
引用
收藏
页码:454 / 459
页数:6
相关论文
共 50 条
  • [21] Multiple mixed solutions of the nonlocal sine-Gordon equation
    Li, Jian
    Duan, Junshen
    Li, Yan
    Li, Chuanzhong
    [J]. EUROPEAN PHYSICAL JOURNAL C, 2024, 84 (04):
  • [22] On multikink states described by the nonlocal sine-Gordon equation
    Alfimov, GL
    Korolev, VG
    [J]. PHYSICS LETTERS A, 1998, 246 (05) : 429 - 435
  • [23] Solitary wave solutions of nonlocal sine-Gordon equations
    Alfimov, GL
    Eleonsky, VM
    Lerman, LM
    [J]. CHAOS, 1998, 8 (01) : 257 - 271
  • [24] NUMERICAL SIMULATIONS OF THE RANDOM-PHASE SINE-GORDON MODEL
    LANCASTER, DJ
    RUIZLORENZO, JJ
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1995, 28 (22): : L577 - L583
  • [25] NUMERICAL STUDY OF PERTURBED SINE-GORDON EQUATION
    SEISL, M
    [J]. ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 1990, 70 (04): : T121 - T125
  • [26] NUMERICAL-SOLUTION OF THE SINE-GORDON EQUATION
    GUO, BY
    PASCUAL, PJ
    RODRIGUEZ, MJ
    VAZQUEZ, L
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 1986, 18 (01) : 1 - 14
  • [27] Pade numerical schemes for the sine-Gordon equation
    Martin-Vergara, Francisca
    Rus, Francisco
    Villatoro, Francisco R.
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2019, 358 : 232 - 243
  • [28] Numerical inverse scattering for the sine-Gordon equation
    Deconinck, Bernard
    Trogdon, Thomas
    Yang, Xin
    [J]. PHYSICA D-NONLINEAR PHENOMENA, 2019, 399 : 159 - 172
  • [29] Breathers in the elliptic sine-Gordon model
    Castro-Alvaredo, OA
    Fring, A
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2003, 36 (40): : 10233 - 10249
  • [30] Double sine-Gordon model revisited
    Takács, G
    Wágner, F
    [J]. NUCLEAR PHYSICS B, 2006, 741 (03) : 353 - 367