RELATIVE DEFICIENCY;
MEAN SQUARE ERROR;
KERNEL TYPE ESTIMATORS;
QUANTILE FUNCTION;
RIGHT CENSORED DATA;
PROPORTIONAL HAZARDS MODEL;
D O I:
10.1007/BF00121652
中图分类号:
O21 [概率论与数理统计];
C8 [统计学];
学科分类号:
020208 ;
070103 ;
0714 ;
摘要:
The problem of estimating a smooth quantile function, Q(.), at a fixed point p, 0 < p < 1, is treated under a nonparametric smoothness condition on Q. The asymptotic relative deficiency of the sample quantile based on the maximum likelihood estimate of the survival function under the proportional hazards model with respect to kernel type estimators of the quantile is evaluated. The comparison is based on the mean square errors of the estimators. It is shown that the relative deficiency tends to infinity as the sample size, n, tends to infinity.
机构:
Wuhan Univ, Sch Math & Stat, Wuhan, Hubei, Peoples R China
South Cent Univ Nationalities, Sch Math & Stat, Wuhan, Hubei, Peoples R China
Simon Fraser Univ, Dept Stat & Actuarial Sci, Burnaby, BC, CanadaWuhan Univ, Sch Math & Stat, Wuhan, Hubei, Peoples R China
Guo, Lisha
Hu, X. Joan
论文数: 0引用数: 0
h-index: 0
机构:
Simon Fraser Univ, Dept Stat & Actuarial Sci, Burnaby, BC, CanadaWuhan Univ, Sch Math & Stat, Wuhan, Hubei, Peoples R China
Hu, X. Joan
Liu, Yanyan
论文数: 0引用数: 0
h-index: 0
机构:
Wuhan Univ, Sch Math & Stat, Wuhan, Hubei, Peoples R ChinaWuhan Univ, Sch Math & Stat, Wuhan, Hubei, Peoples R China