LEAST SQUARES ESTIMATOR ASYMPTOTICS FOR VECTOR AUTOREGRESSIONS WITH DETERMINISTIC REGRESSORS

被引:0
|
作者
Mynbaev, K. T. [1 ]
机构
[1] Kazakh British Tech Univ, Int Sch Econ, Tolebi 59,Room 419, Alma Ata 050035, Kazakhstan
来源
EURASIAN MATHEMATICAL JOURNAL | 2018年 / 9卷 / 01期
关键词
time-series regression; asymptotic distribution; OLS estimator; polynomial trend; deterministic regressor;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider a mixed vector autoregressive model with deterministic exogenous regressors and an autoregressive matrix that has characteristic roots inside the unit circle. The errors are (2+is an element of)-integrable martingale differences with heterogeneous second-order conditional moments. The behavior of the ordinary least squares (OLS) estimator depends on the rate of growth of the exogenous regressors. For bounded or slowly growing regressors we prove asymptotic normality. In case of quickly growing regressors (e.g., polynomial trends) the result is negative: the OLS asymptotics cannot be derived using the conventional scheme and any diagonal normalizer.
引用
收藏
页码:40 / 68
页数:29
相关论文
共 50 条