NSF expedition on variability-aware software: Recent results and contributions

被引:8
|
作者
Wanner, Lucas [1 ]
Lai, Liangzhen [1 ]
Rahimi, Abbas [2 ]
Gottscho, Mark [1 ]
Mercati, Pietro [2 ]
Huang, Chu-Hsiang [1 ]
Sala, Frederic [1 ]
Agarwal, Yuvraj
Dolecek, Lara [1 ]
Dutt, Nikil [4 ]
Gupta, Puneet [1 ]
Gupta, Rajesh [2 ]
Jhala, Ranjit [2 ]
Kumar, Rakesh [5 ]
Lerner, Sorin [2 ]
Mitra, Subhasish [6 ]
Nicolau, Alexandru [7 ]
Rosing, Tajana Simunic [2 ]
Srivastava, Mani B. [1 ]
Swanson, Steve [2 ]
Sylvester, Dennis [8 ]
Zhou, Yuanyuan [2 ,3 ]
机构
[1] Univ Calif Los Angeles, Dept Elect Engn, Los Angeles, CA 90024 USA
[2] Univ Calif San Diego, Comp Sci & Engn Dept, San Diego, CA 92103 USA
[3] Carnegie Mellon Univ, Dept Comp Sci, Pittsburgh, PA 15213 USA
[4] Univ Calif Irvine, Dept Comp Sci, Irvine, CA USA
[5] Univ Illinois, Elect & Comp Engn Dept, Urbana, IL USA
[6] Stanford Univ, Dept Elect Engn, Stanford, CA 94305 USA
[7] Univ Calif Irvine, Ctr Embedded Comp Syst, Irvine, CA USA
[8] Univ Michigan, Dept Elect Engn & Comp Sci, Ann Arbor, MI 48109 USA
来源
IT-INFORMATION TECHNOLOGY | 2015年 / 57卷 / 03期
基金
美国国家科学基金会;
关键词
Hardware variations; variability-aware software; survey;
D O I
10.1515/itit-2014-1085
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper we summarize recent results and contributions from the NSF Expedition on Variability-Aware Software, a five year, multi-university effort to tackle the problem of hardware variations and its implications and opportunities in software. The Expedition has made contributions in characterization and online monitoring of variations (particularly in microprocessors and flash memories), proposed new coding techniques for variability-tolerant storage, provided tools and platforms for the development of variability-aware software, and created new runtime support systems for variability-aware task-scheduling and execution.
引用
收藏
页码:181 / 198
页数:18
相关论文
共 50 条
  • [1] Variability-Aware Datalog
    Shahin, Ramy
    Chechik, Marsha
    PRACTICAL ASPECTS OF DECLARATIVE LANGUAGES (PADL 2020), 2020, 12007 : 213 - 221
  • [2] Toward variability-aware design
    Onodera, Hidetoshi
    2007 SYMPOSIUM ON VLSI TECHNOLOGY, DIGEST OF TECHNICAL PAPERS, 2007, : 92 - 93
  • [3] Variability-Aware Differencing with DiffDetective
    Bittner, Paul Maximilian
    Schultheiss, Alexander
    Moosherr, Benjamin
    Kehrer, Timo
    Thuem, Thomas
    COMPANION PROCEEDINGS OF THE 32ND ACM INTERNATIONAL CONFERENCE ON THE FOUNDATIONS OF SOFTWARE ENGINEERING, FSE COMPANION 2024, 2024, : 632 - 636
  • [4] Annotative Software Product Line Analysis Using Variability-Aware Datalog
    Shahin, Ramy
    Akhundov, Murad
    Chechik, Marsha
    IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, 2023, 49 (03) : 1323 - 1341
  • [5] Scaling Size and Parameter Spaces in Variability-aware Software Performance Models
    Kowal, Matthias
    Tschaikowski, Max
    Tribastone, Mirco
    Schaefer, Ina
    2015 30TH IEEE/ACM INTERNATIONAL CONFERENCE ON AUTOMATED SOFTWARE ENGINEERING (ASE), 2015, : 407 - 417
  • [6] A Variability-Aware Module System
    Kaestner, Christian
    Ostermann, Klaus
    Erdweg, Sebastian
    ACM SIGPLAN NOTICES, 2012, 47 (10) : 773 - 791
  • [7] Generative Software Product Line Development using Variability-Aware Design Patterns
    Seidl, Christoph
    Schuster, Sven
    Schaefer, Ina
    SPLC'18: PROCEEDINGS OF THE 22ND INTERNATIONAL SYSTEMS AND SOFTWARE PRODUCT LINE CONFERENCE, VOL 1, 2018, : 246 - 246
  • [8] Generative Software Product Line Development using Variability-Aware Design Patterns
    Seidl, Christoph
    Schuster, Sven
    Schaefer, Ina
    ACM SIGPLAN NOTICES, 2016, 51 (03) : 151 - 160
  • [9] Generative software product line development using variability-aware design patterns
    Seidl, Christoph
    Schuster, Sven
    Schaefer, Ina
    COMPUTER LANGUAGES SYSTEMS & STRUCTURES, 2017, 48 : 89 - 111
  • [10] Generative Software Product Line Development using Variability-Aware Design Patterns
    Seidl, Christoph
    Schuster, Sven
    Schaefer, Ina
    GPCE'15: PROCEEDINGS OF THE 2015 ACM SIGPLAN INTERNATIONAL CONFERENCE ON GENERATIVE PROGRAMMING: CONCEPTS AND EXPERIENCES, 2015, : 151 - 160