ON THE HARMONIOUS COLORING OF COLLECTIONS OF GRAPHS

被引:8
|
作者
GEORGES, JP
机构
[1] Department of Mathematics, Trinity College, Hartford, Connecticut
关键词
D O I
10.1002/jgt.3190200213
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The harmonious coloring number of the graph G, HC(G), is the smallest number of colors needed to label the vertices of G such that adjacent vertices received different colors and no two edges are incident with the same color pair. In this paper, we investigate the HC-number of collections of disjoint paths, cycles, complete graphs, and complete bipartite graphs. We determine exact expressions for the HC-number of collections of paths and 4m-cycles. (C) 1995 John Wiley & Sons, Inc.
引用
收藏
页码:241 / 254
页数:14
相关论文
共 50 条
  • [1] ON THE HARMONIOUS COLORING OF GRAPHS
    HOPCROFT, JE
    KRISHNAMOORTHY, MS
    [J]. SIAM JOURNAL ON ALGEBRAIC AND DISCRETE METHODS, 1983, 4 (03): : 306 - 311
  • [2] HARMONIOUS COLORING OF MULTICOPY OF COMPLETE GRAPHS
    Muntaner-Batle, Francesc Antoni
    Vivin, Vernold J.
    Venkatachalam, M.
    [J]. TWMS JOURNAL OF APPLIED AND ENGINEERING MATHEMATICS, 2019, 9 (02): : 384 - 395
  • [3] Harmonious Coloring on Subclasses of Colinear Graphs
    Ioannidou, Kyriaki
    Nikolopoulos, Stavros D.
    [J]. WALCOM: ALGORITHMS AND COMPUTATION, PROCEEDINGS, 2010, 5942 : 136 - 148
  • [4] Harmonious Coloring on Corona Product of Complete Graphs
    Muntaner-Batle, Francisco Antonio
    Vivin, J. Vernold
    Venkatachalam, M.
    [J]. NATIONAL ACADEMY SCIENCE LETTERS-INDIA, 2014, 37 (05): : 461 - 465
  • [5] Harmonious Coloring on Corona Product of Complete Graphs
    Francisco Antonio Muntaner-Batle
    J. Vernold Vivin
    M. Venkatachalam
    [J]. National Academy Science Letters, 2014, 37 : 461 - 465
  • [6] Tight Bounds on 1-Harmonious Coloring of Certain Graphs
    Liu, Jia-Bao
    Arockiaraj, Micheal
    Nelson, Antony
    [J]. SYMMETRY-BASEL, 2019, 11 (07):
  • [7] The harmonious coloring problem is NP-complete for interval and permutation graphs
    Asdre, Katerina
    Ioannidou, Kyriaki
    Nikolopoulos, Stavros D.
    [J]. DISCRETE APPLIED MATHEMATICS, 2007, 155 (17) : 2377 - 2382
  • [8] On harmonious coloring of hypergraphs
    Czerwinski, Sebastian
    [J]. DISCRETE MATHEMATICS AND THEORETICAL COMPUTER SCIENCE, 2024, 26 (02):
  • [9] A Note on Harmonious Coloring of Caterpillars
    Takaoka, Asahi
    Okuma, Shingo
    Tayu, Satoshi
    Ueno, Shuichi
    [J]. IEICE TRANSACTIONS ON INFORMATION AND SYSTEMS, 2015, E98D (12): : 2199 - 2206
  • [10] THE COMPLEXITY OF HARMONIOUS COLORING FOR TREES
    EDWARDS, K
    MCDIARMID, C
    [J]. DISCRETE APPLIED MATHEMATICS, 1995, 57 (2-3) : 133 - 144