THE COMPLEXITY OF HARMONIOUS COLORING FOR TREES

被引:36
|
作者
EDWARDS, K [1 ]
MCDIARMID, C [1 ]
机构
[1] UNIV OXFORD,DEPT STAT,OXFORD OX1 3TG,ENGLAND
关键词
D O I
10.1016/0166-218X(94)00100-R
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A harmonious colouring of a simple graph G is a proper vertex colouring such that each pair of colours appears together on at most one edge. The harmonious chromatic number h(G) is the least number of colours in such a colouring. It was shown by Hopcroft and Krishnamoorthy (1983) that the problem of determining the harmonious chromatic number of a graph is NP-hard. We show here that the problem remains hard even when restricted to trees.
引用
收藏
页码:133 / 144
页数:12
相关论文
共 50 条
  • [1] Harmonious coloring of trees with large maximum degree
    Akbari, Saieed
    Kim, Jaehoon
    Kostochka, Alexandr
    [J]. DISCRETE MATHEMATICS, 2012, 312 (10) : 1633 - 1637
  • [2] Complexity of the Packing Coloring Problem for Trees
    Fiala, Jiri
    Golovach, Petr A.
    [J]. GRAPH-THEORETIC CONCEPTS IN COMPUTER SCIENCE, 2008, 5344 : 134 - +
  • [3] Complexity of the packing coloring problem for trees
    Fiala, Jiri
    Golovach, Petr A.
    [J]. DISCRETE APPLIED MATHEMATICS, 2010, 158 (07) : 771 - 778
  • [4] ON THE HARMONIOUS COLORING OF GRAPHS
    HOPCROFT, JE
    KRISHNAMOORTHY, MS
    [J]. SIAM JOURNAL ON ALGEBRAIC AND DISCRETE METHODS, 1983, 4 (03): : 306 - 311
  • [5] On harmonious coloring of hypergraphs
    Czerwinski, Sebastian
    [J]. DISCRETE MATHEMATICS AND THEORETICAL COMPUTER SCIENCE, 2024, 26 (02):
  • [6] On the complexity of H-coloring for special oriented trees
    Bulin, Jakub
    [J]. EUROPEAN JOURNAL OF COMBINATORICS, 2018, 69 : 54 - 75
  • [7] A Note on Harmonious Coloring of Caterpillars
    Takaoka, Asahi
    Okuma, Shingo
    Tayu, Satoshi
    Ueno, Shuichi
    [J]. IEICE TRANSACTIONS ON INFORMATION AND SYSTEMS, 2015, E98D (12): : 2199 - 2206
  • [8] ON THE HARMONIOUS COLORING OF COLLECTIONS OF GRAPHS
    GEORGES, JP
    [J]. JOURNAL OF GRAPH THEORY, 1995, 20 (02) : 241 - 254
  • [9] THE HARMONIOUS COLORING NUMBER OF A GRAPH
    MILLER, Z
    PRITIKIN, D
    [J]. DISCRETE MATHEMATICS, 1991, 93 (2-3) : 211 - 228
  • [10] HARMONIOUS COLORING OF UNIFORM HYPERGRAPHS
    Bosek, Bartlomiej
    Czerwinski, Sebastian
    Grytczuk, Jaroslaw
    Rzazewski, Pawel
    [J]. APPLICABLE ANALYSIS AND DISCRETE MATHEMATICS, 2016, 10 (01) : 73 - 87