OSCILLATOR WITH STRONG QUADRATIC DAMPING FORCE

被引:35
|
作者
Cveticanin, Livija [1 ]
机构
[1] Univ Novi Sad, Fac Tech Sci, Dept Mech, Novi Sad, Serbia
来源
关键词
D O I
10.2298/PIM0999119C
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Oscillations of a system with strong quadratic damping are considered. For the exact analytical form of the energy-displacement function the explicit form of the maximal amplitudes of vibration are obtained by introducing the Lambert W function. Comparing the neighbor maximal amplitudes and the corresponding energies the conclusions about the energy dissipation is given. The approximate solution for a strong nonlinear differential equation which describes the motion of the oscillator with quadratic damping is calculated applying the elliptic-harmonic-balance method. The accuracy of the solution is affirmed by comparing the maximal displacements obtained using the approximate method with the exact one obtained by energy method.
引用
收藏
页码:119 / 130
页数:12
相关论文
共 50 条
  • [41] Exact solution of a quadratic nonlinear oscillator
    Hu, H.
    JOURNAL OF SOUND AND VIBRATION, 2006, 295 (1-2) : 450 - 457
  • [42] Quadratic open quantum harmonic oscillator
    Ameur Dhahri
    Franco Fagnola
    Hyun Jae Yoo
    Letters in Mathematical Physics, 2020, 110 : 1759 - 1782
  • [43] A harmonic oscillator having "volleyball damping"
    Mickens, RE
    Oyedeji, K
    Rucker, SA
    JOURNAL OF SOUND AND VIBRATION, 2006, 292 (3-5) : 980 - 982
  • [44] MECHANICAL STUDY OF THE DAMPING OF THE PHONATORY OSCILLATOR
    DEJONCKERE, P
    LEBACQ, J
    ARCHIVES INTERNATIONALES DE PHYSIOLOGIE DE BIOCHIMIE ET DE BIOPHYSIQUE, 1980, 88 (04): : P31 - P31
  • [45] Random response of an oscillator with hysteresis damping
    LU Yunyun and CHEN Du(University of Science and Technology of China)
    ChineseJournalofAcoustics, 1990, (01) : 21 - 26
  • [46] Harmonic oscillator with fluctuating damping parameter
    Gitterman, M
    PHYSICAL REVIEW E, 2004, 69 (04): : 4
  • [47] Stick–slip vibration of an oscillator with damping
    Hong-In Won
    Jintai Chung
    Nonlinear Dynamics, 2016, 86 : 257 - 267
  • [48] Nonlinear viscoelastic damping in a Poynting oscillator
    Wineman, Alan Stuart
    MATHEMATICS AND MECHANICS OF SOLIDS, 2024, 29 (01) : 3 - 21
  • [49] LINEAR ELECTROSTATIC OSCILLATOR WITH VISCOUS DAMPING
    Coonley, Kip D.
    Humber, Hammond
    Mann, Brian P.
    PROCEEDINGS OF ASME 2023 INTERNATIONAL DESIGN ENGINEERING TECHNICAL CONFERENCES AND COMPUTERS AND INFORMATION IN ENGINEERING CONFERENCE, IDETC-CIE2023, VOL 10, 2023,
  • [50] Stability of a nonlinear oscillator with random damping
    N. Leprovost
    S. Aumaître
    K. Mallick
    The European Physical Journal B - Condensed Matter and Complex Systems, 2006, 49 : 453 - 458