ARITHMETIC OF INFINITE PRODUCTS AND ROGERS-RAMANUJAN CONTINUED FRACTIONS

被引:0
|
作者
Kim, Daeyeoul [1 ,2 ,3 ]
Koo, Ja Kyung [4 ]
Simsek, Yilmaz [5 ]
机构
[1] Natl Inst Math Sci, Tajeon 305340, South Korea
[2] Chonbuk Natl Univ, Dept Math, Chonju 561756, South Korea
[3] Chonbuk Natl Univ, Inst Pure & Appl Math, Chonju 561756, South Korea
[4] Korea Adv Inst Sci & Technol, Dept Math, Taejon 305701, South Korea
[5] Univ Akdeniz, Fac Sci, Dept Math, TR-07058 Antalya, Turkey
来源
关键词
transcendental number; algebraic number; theta series; Rogers-Ramanujan continued fraction;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let k be an imaginary quadratic field, h the complex upper half plane, and let tau is an element of h boolean AND k, q = e(pi i tau). We find a lot of algebraic properties derived from theta functions, and by using this we explore some new algebraic numbers from Rogers-Ramanujan continued fractions.
引用
收藏
页码:331 / 351
页数:21
相关论文
共 50 条