Codes with a poset metric

被引:93
|
作者
Brualdi, RA [1 ]
Graves, JS [1 ]
Lawrence, KM [1 ]
机构
[1] UNIV WISCONSIN,DEPT MATH,MADISON,WI 53706
关键词
D O I
10.1016/0012-365X(94)00228-B
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Niederreiter generalized the following classical problem of coding theory: given a finite field F-4 and integers n > k greater than or equal to 1, find the largest minimum distance achievable by a linear code over F-q, of length n and dimension k. In this paper we place this problem in the more general setting of a partially ordered set and define what we call poset-codes. In this context, Niederreiter's setting may be viewed as the disjoint union of chains. We extend some of Niederreiter's bounds and also obtain bounds for posets which are the product of two chains.
引用
收藏
页码:57 / 72
页数:16
相关论文
共 50 条
  • [21] MacWilliams Extension Property With Respect to Weighted Poset Metric
    Xu, Yang
    Kan, Haibin
    Han, Guangyue
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2024, 70 (02) : 995 - 1007
  • [22] CANONICAL- SYSTEMATIC FORM FOR CODES IN HIERARCHICAL POSET METRICS
    Felix, Luciano Viana
    Firer, Marcelo
    [J]. ADVANCES IN MATHEMATICS OF COMMUNICATIONS, 2012, 6 (03) : 315 - 328
  • [23] Translation association schemes, poset metrics, and the shape enumerator of codes
    Barg, Alexander
    Firer, Marcelo
    [J]. 2012 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY PROCEEDINGS (ISIT), 2012, : 101 - 105
  • [24] MACWILLIAMS IDENTITIES FOR POSET LEVEL WEIGHT ENUMERATORS OF LINEAR CODES
    Akbiyik, Seda
    [J]. SIGMA JOURNAL OF ENGINEERING AND NATURAL SCIENCES-SIGMA MUHENDISLIK VE FEN BILIMLERI DERGISI, 2018, 36 (02): : 405 - 418
  • [25] Column cyclic rank metric codes and linear complementary dual rank metric codes
    de la Cruz, Javier
    Ozbudak, Ferruh
    [J]. JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2024, 23 (07)
  • [26] Block codes on pomset metric
    Shriwastva, Atul Kumar
    Selvaraj, R. S.
    [J]. ASIAN-EUROPEAN JOURNAL OF MATHEMATICS, 2023, 16 (09)
  • [27] Codes with a pomset metric and constructions
    Irrinki Gnana Sudha
    R. S. Selvaraj
    [J]. Designs, Codes and Cryptography, 2018, 86 : 875 - 892
  • [28] Multipermutation Codes in the Ulam Metric
    Farnoud , Farzad
    Milenkovic, Olgica
    [J]. 2014 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY (ISIT), 2014, : 2754 - 2758
  • [29] Codes with the rank metric and matroids
    Shiromoto, Keisuke
    [J]. DESIGNS CODES AND CRYPTOGRAPHY, 2019, 87 (08) : 1765 - 1776
  • [30] CONCATENATED CODES FOR THE LEE METRIC
    ASTOLA, JT
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 1982, 28 (05) : 778 - 779