Randomization-based statistical inference: A resampling and simulation infrastructure

被引:1
|
作者
Dinov, Ivo D. [1 ,2 ,3 ]
Palanimalai, Selvam [1 ]
Khare, Ashwini [1 ]
Christou, Nicolas [1 ]
机构
[1] Univ Calif Los Angeles, Stat Online Computat Resource, Los Angeles, CA 90095 USA
[2] Univ Michigan, UMSN, Stat Online Computat Resource, Ann Arbor, MI 48109 USA
[3] Univ Michigan, Michigan Inst Data Sci, Ann Arbor, MI 48109 USA
关键词
Resampling; Simulation; Statistical inference; Randomization; Bootstrapping; Statistics Online Computational Resource (SOCR);
D O I
10.1111/test.12156
中图分类号
G40 [教育学];
学科分类号
040101 ; 120403 ;
摘要
Statistical inference involves drawing scientifically-based conclusions describing natural processes or observable phenomena from datasets with intrinsic random variation. We designed, implemented, and validated a new portable randomization-based statistical inference infrastructure (http://socr.umich.edu/HTML5/Resampling_Webapp) that blends research-driven data analytics and interactive learning, and provides a backend computational library for managing large amounts of simulated or user-provided data.
引用
收藏
页码:64 / 73
页数:10
相关论文
共 50 条
  • [41] The Improvement of the Parallel Algorithm for Randomization-based Enrichment Analysis
    Grishchenko, M. V.
    Yakimenko, A. A.
    Khairetdinov, M. S.
    Lazareva, A. V.
    2017 INTERNATIONAL MULTI-CONFERENCE ON ENGINEERING, COMPUTER AND INFORMATION SCIENCES (SIBIRCON), 2017, : 269 - 271
  • [42] Randomization-based confidence intervals for cluster randomized trials
    Rabideau, Dustin J.
    Wang, Rui
    BIOSTATISTICS, 2021, 22 (04) : 913 - 927
  • [43] Development and assessment of a preliminary randomization-based introductory statistics curriculum
    Tintle, Nathan
    VanderStoep, Jill
    Holmes, Vicki-Lynn
    Quisenberry, Brooke
    Swanson, Todd
    JOURNAL OF STATISTICS EDUCATION, 2011, 19 (01):
  • [44] Decentralized learning of randomization-based neural networks with centralized equivalence
    Liang, Xinyue
    Javid, Alireza M.
    Skoglund, Mikael
    Chatterjee, Saikat
    APPLIED SOFT COMPUTING, 2022, 115
  • [45] On the Potential of Randomization-based Neural Networks for Driving Behavior Classification
    Del Ser, Javier
    Manibardo, Eric L.
    Lana, Ibai
    2022 IEEE 25TH INTERNATIONAL CONFERENCE ON INTELLIGENT TRANSPORTATION SYSTEMS (ITSC), 2022, : 2991 - 2997
  • [46] Randomization-based Privacy-preserving Frameworks for Collaborative Filtering
    Batmaz, Zeynep
    Polat, Huseyin
    KNOWLEDGE-BASED AND INTELLIGENT INFORMATION & ENGINEERING SYSTEMS: PROCEEDINGS OF THE 20TH INTERNATIONAL CONFERENCE KES-2016, 2016, 96 : 33 - 42
  • [47] On exact randomization-based covariate-adjusted confidence intervals
    Fiksel J.
    Biometrics, 2024, 80 (02)
  • [48] Randomization-based hypothesis testing from event-related data
    Greenblatt, RE
    Pflieger, ME
    BRAIN TOPOGRAPHY, 2004, 16 (04) : 225 - 232
  • [49] Statistical Inference for Covariate-Adaptive Randomization Procedures
    Ma, Wei
    Qin, Yichen
    Li, Yang
    Hu, Feifang
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2020, 115 (531) : 1488 - 1497
  • [50] Reinforcing Sampling Distributions through a Randomization-Based Activity for Introducing ANOVA
    Taylor, Laura
    Doehler, Kirsten
    JOURNAL OF STATISTICS EDUCATION, 2015, 23 (03):