Randomization-based statistical inference: A resampling and simulation infrastructure

被引:1
|
作者
Dinov, Ivo D. [1 ,2 ,3 ]
Palanimalai, Selvam [1 ]
Khare, Ashwini [1 ]
Christou, Nicolas [1 ]
机构
[1] Univ Calif Los Angeles, Stat Online Computat Resource, Los Angeles, CA 90095 USA
[2] Univ Michigan, UMSN, Stat Online Computat Resource, Ann Arbor, MI 48109 USA
[3] Univ Michigan, Michigan Inst Data Sci, Ann Arbor, MI 48109 USA
关键词
Resampling; Simulation; Statistical inference; Randomization; Bootstrapping; Statistics Online Computational Resource (SOCR);
D O I
10.1111/test.12156
中图分类号
G40 [教育学];
学科分类号
040101 ; 120403 ;
摘要
Statistical inference involves drawing scientifically-based conclusions describing natural processes or observable phenomena from datasets with intrinsic random variation. We designed, implemented, and validated a new portable randomization-based statistical inference infrastructure (http://socr.umich.edu/HTML5/Resampling_Webapp) that blends research-driven data analytics and interactive learning, and provides a backend computational library for managing large amounts of simulated or user-provided data.
引用
收藏
页码:64 / 73
页数:10
相关论文
共 50 条