Polynomial invariants of graphs on surfaces

被引:9
|
作者
Askanazi, Ross [1 ]
Chmutov, Sergei [2 ]
Estill, Charles [1 ]
Michel, Jonathan [1 ]
Stollenwerk, Patrick [3 ]
机构
[1] Ohio State Univ, Dept Math, 231West 18th Ave, Columbus, OH 43210 USA
[2] Ohio State Univ, Mansfield, OH 44906 USA
[3] Boston Univ, Dept Phys, Boston, MA 02215 USA
关键词
Graphs on surfaces; ribbon graphs; matroids; Krushkal polynomial; Las Vergnas polynomial; Bollobas-Riordan polynomial;
D O I
10.4171/QT/35
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For a graph embedded into a surface, we relate many combinatorial parameters of the cycle matroid of the graph and the bond matroid of the dual graph with the topological parameters of the embedding. This gives an expression of the polynomial, defined by M. Las Vergnas in a combinatorial way using matroids as a specialization of the Krushkal polynomial, defined using the symplectic structure in the first homology group of the surface.
引用
下载
收藏
页码:77 / 90
页数:14
相关论文
共 50 条
  • [31] Polynomial invariants for cactuses
    van Iersel, Leo
    Moulton, Vincent
    Murakami, Yukihiro
    INFORMATION PROCESSING LETTERS, 2023, 182
  • [32] Generalized duality for graphs on surfaces and the signed Bollobas-Riordan polynomial
    Chmutov, Sergei
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 2009, 99 (03) : 617 - 638
  • [33] Immanantal invariants of graphs
    Merris, R
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2005, 401 : 67 - 75
  • [34] ISOTOPY INVARIANTS OF GRAPHS
    JONISH, D
    MILLETT, KC
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1991, 327 (02) : 655 - 702
  • [35] Laplace operator and polynomial invariants
    Iltyakov, AV
    JOURNAL OF ALGEBRA, 1998, 207 (01) : 256 - 271
  • [36] Polynomial Invariants by Linear Algebra
    de Oliveira, Steven
    Bensalem, Saddek
    Prevosto, Virgile
    AUTOMATED TECHNOLOGY FOR VERIFICATION AND ANALYSIS, ATVA 2016, 2016, 9938 : 479 - 494
  • [37] A NOTE ON DONALDSON POLYNOMIAL INVARIANTS
    MORGAN, JW
    MROWKA, TS
    DUKE MATHEMATICAL JOURNAL, 1992, 68 (02) : A223 - A230
  • [38] Polynomial invariants by linear algebra
    de Oliveira, Steven (steven.deoliveira@cea.fr), 1600, Springer Verlag (9938 LNCS):
  • [39] New perspectives on polynomial invariants
    Fu, Houshan
    Wang, Suijie
    Yang, Jinxing
    DISCRETE MATHEMATICS, 2024, 347 (10)
  • [40] Topological invariants of polynomial maps
    Bartolo, EA
    Cassou-Noguès, P
    Maugendre, H
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 2001, 333 (08): : 751 - 754