ON ONE METHOD OF SOLVING NONSTATIONARY HEAT-CONDUCTION PROBLEMS FOR MULTILAYER STRUCTURES

被引:3
|
作者
Kudinov, V. A. [1 ]
Dikop, V. V. [1 ]
Nazarenko, S. A. [1 ]
Stefanyuk, E. V. [1 ]
机构
[1] Samara State Tech Univ, 244 Molodogvardeiskaya Str, Samara 443100, Russia
关键词
D O I
10.1007/s10891-005-0052-3
中图分类号
O414.1 [热力学];
学科分类号
摘要
As applied to the solution of the heat-conduction problem for a two-layer structure, the Fourier method is used jointly with the orthogonal Bubnov-Galerkin method. An important feature is the introduction of additional boundary conditions, the need for which is explained by the appearance of an additional parameter mu after the separation of the variables in the input differential equation. The additional boundary conditions are derived from the basic differential equation by differentiating it at the boundary points.
引用
收藏
页码:225 / 230
页数:6
相关论文
共 50 条
  • [31] PERTURBATION METHOD AS APPLIED TO NONLINEAR HEAT-CONDUCTION PROBLEMS
    YAMPOLSK.NG
    AIZEN, AM
    [J]. HIGH TEMPERATURE, 1968, 6 (05) : 845 - &
  • [32] HEAT-CONDUCTION IN CHESS STRUCTURES
    BERDICHEVSKY, VL
    [J]. VESTNIK MOSKOVSKOGO UNIVERSITETA SERIYA 1 MATEMATIKA MEKHANIKA, 1985, (04): : 56 - 63
  • [33] A DIRECT ANALYTICAL APPROACH FOR SOLVING LINEAR INVERSE HEAT-CONDUCTION PROBLEMS
    ALNAJEM, NM
    OZISIK, MN
    [J]. JOURNAL OF HEAT TRANSFER-TRANSACTIONS OF THE ASME, 1985, 107 (03): : 700 - 703
  • [34] On the Matrix Method for Solving Heat Conduction Problems in a Multilayer Medium in the Presence of Phase Transitions
    Gladyshev Y.A.
    Kalmanovich V.V.
    [J]. Journal of Mathematical Sciences, 2022, 267 (6) : 698 - 705
  • [35] A Meshless Method of Solving Three-Dimensional Nonstationary Heat Conduction Problems in Anisotropic Materials
    D. O. Protektor
    V. M. Kolodyazhny
    D. O. Lisin
    O. Yu. Lisina
    [J]. Cybernetics and Systems Analysis, 2021, 57 : 470 - 480
  • [36] A Meshless Method of Solving Three-Dimensional Nonstationary Heat Conduction Problems in Anisotropic Materials
    Protektor, D. O.
    Kolodyazhny, V. M.
    Lisin, D. O.
    Lisina, O. Yu.
    [J]. CYBERNETICS AND SYSTEMS ANALYSIS, 2021, 57 (03) : 470 - 480
  • [37] Approximate methods for solving problems of nonstationary heat conduction in inhomogeneous media
    Vasil'eva, T.V.
    Dudarev, Yu.I.
    Kashin, A.P.
    Maksimov, M.Z.
    [J]. Inzhenerno-Fizicheskii Zhurnal, 2000, 73 (06): : 1358 - 1363
  • [38] Approximate Methods for Solving Problems of Nonstationary Heat Conduction in Inhomogeneous Media
    T. V. Vasil'eva
    Yu. I. Dudarev
    A. P. Kashin
    M. Z. Maksimov
    [J]. Journal of Engineering Physics and Thermophysics, 2000, 73 (6) : 1317 - 1322
  • [39] AN EFFICIENT VARIANT OF THE FINITE-ELEMENT METHOD FOR THE SOLUTION OF 3-DIMENSIONAL NONSTATIONARY HEAT-CONDUCTION PROBLEMS
    GOLOVCHAN, VT
    DUTKA, VA
    KOLODNITSKY, VN
    NIKITYUK, NI
    PETASYUK, OU
    [J]. DOPOVIDI AKADEMII NAUK UKRAINSKOI RSR SERIYA A-FIZIKO-MATEMATICHNI TA TECHNICHNI NAUKI, 1987, (10): : 66 - 69
  • [40] ON ONE METHOD FOR SOLVING TRANSIENT HEAT CONDUCTION PROBLEMS WITH ASYMMETRIC BOUNDARY CONDITIONS
    Kudinov, I. V.
    Stefanyuk, E. V.
    Skvortsova, M. P.
    Kotova, E. V.
    Sinyaev, G. M.
    [J]. VESTNIK SAMARSKOGO GOSUDARSTVENNOGO TEKHNICHESKOGO UNIVERSITETA-SERIYA-FIZIKO-MATEMATICHESKIYE NAUKI, 2016, 20 (02): : 342 - 353