Stochastic Taylor Methods for Stochastic Delay Differential Equations

被引:0
|
作者
Rosli, Norhayati [1 ]
Bahar, Arifah [2 ]
Hoe, Yeak Su [2 ,3 ]
Rahman, Haliza Abdul [2 ]
机构
[1] Univ Malaysia Pahang, Fac Ind Sci & Technol, Lebuhraya Tun Razak, Gambang 26300, Pahang, Malaysia
[2] Univ Teknol Malaysia, Fac Sci, Dept Math Sci, Johor Baharu 81310, Johor, Malaysia
[3] Univ Teknol Malaysia, Ibnu Sina Inst Fundamental Sci Studies, Johor Baharu 81310, Johor, Malaysia
来源
MATEMATIKA | 2013年 / 29卷 / 01期
关键词
Numerical Solution; Stochastic Delay Differential Equations; Stochastic Taylor Expansion;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper demonstrates a systematic derivation of high order numerical methods from stochastic Taylor expansion for solving stochastic delay differential equations (SDDEs) with a constant time lag, r > 0. The stochastic Taylor expansion of SDDEs is truncated at certain terms to achieve the order of convergence of numerical methods for SDDEs. Three different numerical schemes of Euler method, Milstein scheme and stochastic Taylor method of order 1.5 have been derived. The performance of Euler method, Milstein scheme and stochastic Taylor method of order 1.5 are investigated in a simulation study.
引用
收藏
页码:241 / 251
页数:11
相关论文
共 50 条
  • [1] A Systematic Derivation of Stochastic Taylor Methods for Stochastic Delay Differential Equations
    Rosli, Norhayati
    Bahar, Arifah
    Yeak, S. H.
    Mao, X.
    [J]. BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2013, 36 (03) : 555 - 576
  • [2] The Performance of Stochastic Taylor Methods and Derivative-Free Method to Approximate the Solutions of Stochastic Delay Differential Equations
    Rosli, Norhayati
    Abd Mutalib, Noor Julailah
    Ariffin, Noor Amalina Nisa
    Mazlan, Mazma Syahidatul Ayuni
    [J]. PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON MATHEMATICAL SCIENCES AND TECHNOLOGY 2018 (MATHTECH 2018): INNOVATIVE TECHNOLOGIES FOR MATHEMATICS & MATHEMATICS FOR TECHNOLOGICAL INNOVATION, 2019, 2184
  • [3] Implicit Taylor methods for stiff stochastic differential equations
    Tian, TH
    Burrage, K
    [J]. APPLIED NUMERICAL MATHEMATICS, 2001, 38 (1-2) : 167 - 185
  • [4] Compensated stochastic theta methods for stochastic differential delay equations with jumps
    Li, Qiyong
    Gan, Siqing
    Wang, Xiaojie
    [J]. INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2013, 90 (05) : 1057 - 1071
  • [5] Stability of stochastic θ-methods for stochastic delay integro-differential equations
    Hu, Peng
    Huang, Chengming
    [J]. INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2011, 88 (07) : 1417 - 1429
  • [6] θ-Maruyama methods for nonlinear stochastic differential delay equations
    Wang, Xiaojie
    Gan, Siqing
    Wang, Desheng
    [J]. APPLIED NUMERICAL MATHEMATICS, 2015, 98 : 38 - 58
  • [7] Magnus Methods for Stochastic Delay-Differential Equations
    Griggs, Mitchell
    Burrage, Kevin
    Burrage, Pamela
    [J]. INTERNATIONAL CONFERENCE ON NUMERICAL ANALYSIS AND APPLIED MATHEMATICS 2022, ICNAAM-2022, 2024, 3094
  • [8] Taylor approximation of the solutions of stochastic differential delay equations with Poisson jump
    Jiang, Feng
    Shen, Yi
    Liu, Lei
    [J]. COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2011, 16 (02) : 798 - 804
  • [9] Delay dependent stability of stochastic split-step θ methods for stochastic delay differential equations
    Hu, Peng
    Huang, Chengming
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2018, 339 : 663 - 674
  • [10] MEAN SQUARE CONVERGENCE OF STOCHASTIC θ-METHODS FOR NONLINEAR NEUTRAL STOCHASTIC DIFFERENTIAL DELAY EQUATIONS
    Gan, Siqing
    Schurz, Henri
    Zhang, Haomin
    [J]. INTERNATIONAL JOURNAL OF NUMERICAL ANALYSIS AND MODELING, 2011, 8 (02) : 201 - 213