In this paper, we are concerned with the stochastic differential delay equations with Poisson jump (SDDEsPJ). As stochastic differential equations, most SDDEsPJ cannot be solved explicitly. Therefore, numerical solutions have become an important issue in the study of SDDEsPJ. The key contribution of this paper is to investigate the strong convergence between the true solutions and the numerical solutions to SDDEsPJ when the drift and diffusion coefficients are Taylor approximations. (C) 2010 Elsevier B.V. All rights reserved.
机构:
Univ Malaysia Pahang, Fac Ind Sci & Technol, Lebuhraya Tun Razak, Gambang 26300, Pahang, MalaysiaUniv Malaysia Pahang, Fac Ind Sci & Technol, Lebuhraya Tun Razak, Gambang 26300, Pahang, Malaysia
Rosli, Norhayati
Bahar, Arifah
论文数: 0引用数: 0
h-index: 0
机构:
Univ Teknol Malaysia, Fac Sci, Dept Math Sci, Johor Baharu 81310, Johor, MalaysiaUniv Malaysia Pahang, Fac Ind Sci & Technol, Lebuhraya Tun Razak, Gambang 26300, Pahang, Malaysia
Bahar, Arifah
Hoe, Yeak Su
论文数: 0引用数: 0
h-index: 0
机构:
Univ Teknol Malaysia, Fac Sci, Dept Math Sci, Johor Baharu 81310, Johor, Malaysia
Univ Teknol Malaysia, Ibnu Sina Inst Fundamental Sci Studies, Johor Baharu 81310, Johor, MalaysiaUniv Malaysia Pahang, Fac Ind Sci & Technol, Lebuhraya Tun Razak, Gambang 26300, Pahang, Malaysia
Hoe, Yeak Su
Rahman, Haliza Abdul
论文数: 0引用数: 0
h-index: 0
机构:
Univ Teknol Malaysia, Fac Sci, Dept Math Sci, Johor Baharu 81310, Johor, MalaysiaUniv Malaysia Pahang, Fac Ind Sci & Technol, Lebuhraya Tun Razak, Gambang 26300, Pahang, Malaysia