Bayesian Hierarchical Model for Estimating Gene Expression Intensity Using Multiple Scanned Microarrays

被引:2
|
作者
Gupta, Rashi [1 ,2 ]
Arjas, Elja [1 ,3 ]
Kulathinal, Sangita [1 ]
Thomas, Andrew [1 ]
Auvinen, Petri [2 ]
机构
[1] Univ Helsinki, Dept Math & Stat, POB 68, Helsinki 00014, Finland
[2] Univ Helsinki, Inst Biotechnol, Helsinki 00014, Finland
[3] Nat Publ Hlth Inst KTL, Helsinki 00300, Finland
基金
芬兰科学院;
关键词
D O I
10.1155/2008/231950
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
We propose a method for improving the quality of signal from DNA microarrays by using several scans at varying scanner sensitivities. A Bayesian latent intensity model is introduced for the analysis of such data. The method improves the accuracy at which expressions can be measured in all ranges and extends the dynamic range ofmeasured gene expression at the high end. Ourmethod is generic and can be applied to data from any organism, for imaging with any scanner that allows varying the laser power, and for extraction with any image analysis software. Results from a self-self hybridization data set illustrate an improved precision in the estimation of the expression of genes compared to what can be achieved by applying standard methods and using only a single scan.Copyright (C) 2008 Rashi Gupta et al.
引用
收藏
页数:11
相关论文
共 50 条
  • [11] Bayesian hierarchical graph-structured model for pathway analysis using gene expression data
    Zhou, Hui
    Zheng, Tian
    STATISTICAL APPLICATIONS IN GENETICS AND MOLECULAR BIOLOGY, 2013, 12 (03) : 393 - 412
  • [12] Estimating the sizes of populations at risk of HIV infection from multiple data sources using a Bayesian hierarchical model
    Bao, Le
    Raftery, Adrian E.
    Reddy, Amala
    STATISTICS AND ITS INTERFACE, 2015, 8 (02) : 125 - 136
  • [13] Statistical estimation of gene expression using multiple laser scans of microarrays
    Khondoker, MR
    Glasbey, CA
    Worton, BJ
    BIOINFORMATICS, 2006, 22 (02) : 215 - 219
  • [14] A full Bayesian hierarchical mixture model for the variance of gene differential expression
    Samuel OM Manda
    Rebecca E Walls
    Mark S Gilthorpe
    BMC Bioinformatics, 8
  • [15] Comments on 'Bayesian hierarchical error model for analysis of gene expression data'
    Wu, Xiao-Lin
    Forney, Larry J.
    Joyce, Paul
    BIOINFORMATICS, 2006, 22 (19) : 2446 - 2451
  • [16] Analysis of gene expression in multiple sclerosis lesions using cDNA microarrays
    Whitney, LW
    Becker, KG
    Tresser, NJ
    Caballero-Ramos, CI
    Munson, PJ
    Prabhu, VV
    Trent, JM
    McFarland, HF
    Biddison, WE
    ANNALS OF NEUROLOGY, 1999, 46 (03) : 425 - 428
  • [17] A full Bayesian hierarchical mixture model for the variance of gene differential expression
    Manda, Samuel O. M.
    Walls, Rebecca E.
    Gilthorpe, Mark S.
    BMC BIOINFORMATICS, 2007, 8 (1)
  • [18] Gene expression studies using microarrays
    Burgess, JK
    CLINICAL AND EXPERIMENTAL PHARMACOLOGY AND PHYSIOLOGY, 2001, 28 (04) : 321 - 328
  • [19] Combining microarrays and biological knowledge for estimating gene networks via Bayesian networks
    Imoto, S
    Higuchi, T
    Goto, T
    Tashiro, K
    Kuhara, S
    Miyano, S
    PROCEEDINGS OF THE 2003 IEEE BIOINFORMATICS CONFERENCE, 2003, : 104 - 113
  • [20] Integrative analysis of multiple genomic variables using a hierarchical Bayesian model
    Schaefer, Martin
    Klein, Hans-Ulrich
    Schwender, Holger
    BIOINFORMATICS, 2017, 33 (20) : 3220 - 3227