Bayesian Hierarchical Model for Estimating Gene Expression Intensity Using Multiple Scanned Microarrays

被引:2
|
作者
Gupta, Rashi [1 ,2 ]
Arjas, Elja [1 ,3 ]
Kulathinal, Sangita [1 ]
Thomas, Andrew [1 ]
Auvinen, Petri [2 ]
机构
[1] Univ Helsinki, Dept Math & Stat, POB 68, Helsinki 00014, Finland
[2] Univ Helsinki, Inst Biotechnol, Helsinki 00014, Finland
[3] Nat Publ Hlth Inst KTL, Helsinki 00300, Finland
基金
芬兰科学院;
关键词
D O I
10.1155/2008/231950
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
We propose a method for improving the quality of signal from DNA microarrays by using several scans at varying scanner sensitivities. A Bayesian latent intensity model is introduced for the analysis of such data. The method improves the accuracy at which expressions can be measured in all ranges and extends the dynamic range ofmeasured gene expression at the high end. Ourmethod is generic and can be applied to data from any organism, for imaging with any scanner that allows varying the laser power, and for extraction with any image analysis software. Results from a self-self hybridization data set illustrate an improved precision in the estimation of the expression of genes compared to what can be achieved by applying standard methods and using only a single scan.Copyright (C) 2008 Rashi Gupta et al.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Bayesian robust inference for differential gene expression in microarrays with multiple samples
    Gottardo, R
    Raftery, AE
    Yeung, KY
    Bumgarner, RE
    BIOMETRICS, 2006, 62 (01) : 10 - 18
  • [2] Hierarchical Bayesian model for analysis of gene expression data
    Rekaya, R.
    Zhang, W.
    JOURNAL OF DAIRY SCIENCE, 2005, 88 : 104 - 105
  • [3] Hierarchical Bayesian model for analysis of gene expression data
    Rekaya, R.
    Zhang, W.
    JOURNAL OF ANIMAL SCIENCE, 2005, 83 : 104 - 105
  • [4] Bayesian hierarchical model for correcting signal saturation in microarrays using pixel intensities
    Gupta, Rashi
    Auvinen, Petri
    Thomas, Andrew
    Arjas, Elja
    STATISTICAL APPLICATIONS IN GENETICS AND MOLECULAR BIOLOGY, 2006, 5
  • [5] Bayesian Hierarchical Model for Differential Gene Expression Using RNA-Seq Data
    Lee J.
    Ji Y.
    Liang S.
    Cai G.
    Müller P.
    Statistics in Biosciences, 2015, 7 (1) : 48 - 67
  • [6] Bayesian hierarchical error model for analysis of gene expression data
    Cho, H
    Lee, JK
    BIOINFORMATICS, 2004, 20 (13) : 2016 - 2025
  • [7] = Bayesian hierarchical model for estimating gene association network from microarray data
    Zhu, Dongxiao
    Hero, Alfred O.
    2006 IEEE INTERNATIONAL WORKSHOP ON GENOMIC SIGNAL PROCESSING AND STATISTICS, 2006, : 31 - +
  • [8] A Bayesian hierarchical model for signal extraction from protein microarrays
    Berube, Sophie
    Kobayashi, Tamaki
    Wesolowski, Amy
    Norris, Douglas E.
    Ruczinski, Ingo
    Moss, William J.
    Louis, Thomas A.
    STATISTICS IN MEDICINE, 2023, 42 (09) : 1445 - 1460
  • [9] Unsupervised Bayesian linear unmixing of gene expression microarrays
    Bazot, Cecile
    Dobigeon, Nicolas
    Tourneret, Jean-Yves
    Zaas, Aimee K.
    Ginsburg, Geoffrey S.
    Hero, Alfred O., III
    BMC BIOINFORMATICS, 2013, 14
  • [10] Unsupervised Bayesian linear unmixing of gene expression microarrays
    Cécile Bazot
    Nicolas Dobigeon
    Jean-Yves Tourneret
    Aimee K Zaas
    Geoffrey S Ginsburg
    Alfred O Hero III
    BMC Bioinformatics, 14