A GENERALIZATION OF STEENROD'S APPROXIMATION THEOREM

被引:0
|
作者
Wockel, Christoph [1 ]
机构
[1] Tech Univ Darmstadt, Fachbereich Math, Schlossgartenstr 7, D-64289 Darmstadt, Germany
来源
ARCHIVUM MATHEMATICUM | 2009年 / 45卷 / 02期
关键词
infinite-dimensional manifold; infinite-dimensional smooth bundle; smoothing of continuous sections; density of smooth in continuous sections; topology on spaces of continuous functions;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we aim for a generalization of the Steenrod Approximation Theorem from [16, Section 6.7], concerning a smoothing procedure for sections in smooth locally trivial bundles. The generalization is that we consider locally trivial smooth bundles with a possibly infinite-dimensional typical fibre. The main result states that a continuous section in a smooth locally trivial bundles can always be smoothed out in a very controlled way (in terms of the graph topology on spaces of continuous functions), preserving the section on regions where it is already smooth.
引用
收藏
页码:95 / 104
页数:10
相关论文
共 50 条
  • [21] A generalization of Wolstenholme's theorem
    Bayat, M
    [J]. AMERICAN MATHEMATICAL MONTHLY, 1997, 104 (06): : 557 - 560
  • [22] GENERALIZATION OF PTOLEMY'S THEOREM
    Tran Quang Hung
    [J]. JOURNAL OF SCIENCE AND ARTS, 2019, (02): : 275 - 280
  • [23] ON STEENROD BUNDLES AND THE VANKAMPEN THEOREM
    HANSEN, VL
    [J]. CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 1988, 31 (02): : 241 - 249
  • [24] On a generalization of Redei's theorem
    Gács, A
    [J]. COMBINATORICA, 2003, 23 (04) : 585 - 598
  • [25] A generalization of Ohkawa's theorem
    Casacuberta, Carles
    Gutierrez, Javier J.
    Rosicky, Jiri
    [J]. COMPOSITIO MATHEMATICA, 2014, 150 (05) : 893 - 902
  • [26] A generalization of Cobham's theorem
    Durand, F
    [J]. THEORY OF COMPUTING SYSTEMS, 1998, 31 (02) : 169 - 185
  • [27] Generalization of Obata's theorem
    [J]. J Geom Anal, 3 (357-375):
  • [28] A Generalization of Pohlke's Theorem
    Bergold, Helmut
    [J]. ELEMENTE DER MATHEMATIK, 2014, 69 (02) : 57 - 60
  • [29] On a generalization of Jentzsch's theorem
    Blatt, Hans-Peter
    Blatt, Simon
    Luh, Wolfgang
    [J]. JOURNAL OF APPROXIMATION THEORY, 2009, 159 (01) : 26 - 38
  • [30] A generalization of Forelli's theorem
    Joo, Jae-Cheon
    Kim, Kang-Tae
    Schmalz, Gerd
    [J]. MATHEMATISCHE ANNALEN, 2013, 355 (03) : 1171 - 1176