3.2 MU-M INFRARED RESONANT-CAVITY LIGHT-EMITTING DIODE

被引:55
|
作者
HADJI, E
BLEUSE, J
MAGNEA, N
PAUTRAT, JL
机构
[1] Dèpartement de Recherche Fondamentale sur la Matière Condensée, SP2M/PSC-CENG, F 38054 Grenoble Cedex 9, 17, av. des Martyrs
关键词
D O I
10.1063/1.115141
中图分类号
O59 [应用物理学];
学科分类号
摘要
A CdHgTe resonant cavity light emitting diode is proposed as a new infrared emitter. The device consists of a bottom Bragg reflector of 86% reflectivity, a half-wavelength cavity, n doped at the beginning (10(18) cm(-3)) and p doped at the end (10(18) cm(-3)), containing an active layer at the antinode position, and a top gold mirror of 95% reflectivity which also serves as an Ohmic contact. The emission spectrum shows a narrow peak of 8 meV full width at half-maximum (FWHM) at 300 K, which is much less than the inhomogeneous linewidth of CdHgTe quantum wells (QWs). This electroluminescent peak matches very well the cavity resonance wavelength and FWHM, as given by transmission measurements of the unbiased cavity. The directivity is also improved by the cavity effect. Thus, we have demonstrated that even a relatively low Q microcavity can greatly enhance the characteristics of an infrared emitter in the 2-5 mu m range. (C) 1995 American Institute of Physics.
引用
收藏
页码:2591 / 2593
页数:3
相关论文
共 50 条
  • [21] High-quality distributed Bragg reflectors for resonant-cavity light-emitting diode applications
    Fernández, S
    Naranjo, FB
    Calle, F
    Sánchez-García, MA
    Calleja, E
    Vennéguès, P
    [J]. PHYSICA STATUS SOLIDI A-APPLIED RESEARCH, 2002, 192 (02): : 389 - 393
  • [22] Spectral properties of resonant-cavity, polyfluorene light-emitting diodes
    Fletcher, RB
    Lidzey, DG
    Bradley, DDC
    Bernius, M
    Walker, S
    [J]. APPLIED PHYSICS LETTERS, 2000, 77 (09) : 1262 - 1264
  • [23] 1.3 μm resonant-cavity InGaAs/GaAs quantum dot light-emitting devices
    Krestnikov, IL
    Maleev, NA
    Sakharov, AV
    Kovsh, AR
    Zhukov, AE
    Tsatsul'nikov, AF
    Ustinov, VM
    Alferov, ZI
    Ledentsov, NN
    Bimberg, D
    Lott, JA
    [J]. SEMICONDUCTOR SCIENCE AND TECHNOLOGY, 2001, 16 (10) : 844 - 848
  • [24] 1.3 μm GaAsSb resonant-cavity light-emitting diodes grown on GaAs substrate
    Jin, X
    Yu, SQ
    Cao, Y
    Ding, D
    Wang, JB
    Samal, N
    Sadofyev, Y
    Johnson, SR
    Zhang, YH
    [J]. 2003 IEEE LEOS ANNUAL MEETING CONFERENCE PROCEEDINGS, VOLS 1 AND 2, 2003, : 69 - 70
  • [25] INCREASED FIBER COMMUNICATIONS BANDWIDTH FROM A RESONANT-CAVITY LIGHT-EMITTING DIODE EMITTING AT LAMBDA=940 NM
    HUNT, NEJ
    SCHUBERT, EF
    KOPF, RF
    SIVCO, DL
    CHO, AY
    ZYDZIK, GJ
    [J]. APPLIED PHYSICS LETTERS, 1993, 63 (19) : 2600 - 2602
  • [26] ENHANCED SPECTRAL POWER-DENSITY AND REDUCED LINEWIDTH AT 1.3-MU-M IN AN INGAASP QUANTUM-WELL RESONANT-CAVITY LIGHT-EMITTING DIODE
    HUNT, NEJ
    SCHUBERT, EF
    LOGAN, RA
    ZYDZIK, GJ
    [J]. APPLIED PHYSICS LETTERS, 1992, 61 (19) : 2287 - 2289
  • [27] A resonant-cavity blue-violet light-emitting diode with conductive nanoporous distributed Bragg reflector
    Zhang, Cheng
    Xiong, Kanglin
    Yuan, Ge
    Han, Jung
    [J]. PHYSICA STATUS SOLIDI A-APPLICATIONS AND MATERIALS SCIENCE, 2017, 214 (08):
  • [28] Surface plasmon mediated emission in resonant-cavity light-emitting diodes
    Porta, P. A.
    Harries, M.
    Summers, H. D.
    [J]. APPLIED PHYSICS LETTERS, 2006, 89 (12)
  • [29] Origin of power fluctuations in GaN resonant-cavity light-emitting diodes
    Roycroft, B
    Akhter, M
    Maaskant, P
    Corbett, B
    Shaw, A
    Bradley, L
    de Mierry, P
    Poisson, MA
    [J]. OPTICS EXPRESS, 2004, 12 (05): : 736 - 741
  • [30] The effects of oxide apertures on the characteristics of resonant-cavity light-emitting diodes
    Yang, Wei
    Li, Jianjun
    Sun, Pei
    Ma, Lingyun
    [J]. PHOTONICS AND OPTOLECTRONICS MEETINGS (POEM) 2011: OPTOELECTRONIC DEVICES AND INTEGRATION, 2011, 8333