A-stable High Order Hybrid Linear Multistep Methods for Stiff Problems

被引:0
|
作者
Okuonghae, R. I. [1 ]
机构
[1] Univ Benin, Dept Math, PMB 1154, Benin, Edo State, Nigeria
关键词
A-stable methods; hybrid linear multistep methods; stiff IVPs;
D O I
10.1260/1748-3018.8.4.441
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
This paper considers a new class of high order hybrid linear multistep methods for the numerical solution of stiff initial value problems (IVPs) in ordinary differential equations (ODEs). The numerical experiments shows the application of the methods on stiff problems.
引用
收藏
页码:441 / 469
页数:29
相关论文
共 50 条
  • [21] A-STABLE HIGH-ORDER BLOCK IMPLICIT METHODS FOR PARABOLIC EQUATIONS
    Li, Shishun
    Wang, Jing-Yuan
    Cai, Xiao-Chuan
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2023, 61 (04) : 1858 - 1884
  • [22] High-Order Locally A-Stable Implicit Schemes for Linear ODEs
    Hélène Barucq
    Marc Duruflé
    Mamadou N’diaye
    Journal of Scientific Computing, 2020, 85
  • [23] AN ORDER BOUND FOR IRRATIONAL A-STABLE SINGLE-STEP METHOD FOR STIFF BOUNDARY-VALUE-PROBLEMS
    SCHILD, KH
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 1991, 71 (06): : T776 - T778
  • [24] High-Order Locally A-Stable Implicit Schemes for Linear ODEs
    Barucq, Helene
    Durufle, Marc
    N'diaye, Mamadou
    JOURNAL OF SCIENTIFIC COMPUTING, 2020, 85 (02)
  • [25] The vector form of a sixth-order A-stable explicit one-step method for stiff problems
    Wu, XY
    Xia, JL
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2000, 39 (3-4) : 247 - 257
  • [26] High order one-step a-stable exponentially fitted methods
    Yang F.
    Chen X.
    Luo Y.
    Applied Mathematics-A Journal of Chinese Universities, 1999, 14 (3) : 359 - 365
  • [27] A new family of A-stable Runge-Kutta methods with equation-dependent coefficients for stiff problems
    Yonglei Fang
    Yanping Yang
    Xiong You
    Bin Wang
    Numerical Algorithms, 2019, 81 : 1235 - 1251
  • [28] L-stable and A-stable numerical method of order two for stiff differential equation
    Selvakumar, K.
    Jason, K.
    SOFT COMPUTING, 2022, 26 (22) : 12779 - 12794
  • [29] Minimal residual multistep methods for large stiff non-autonomous linear problems
    Faleichik, Boris, V
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2021, 387
  • [30] Minimal residual multistep methods for large stiff non-autonomous linear problems
    Faleichik, Boris V.
    1600, Elsevier B.V. (387):