1ST-ORDER AND 3RD-ORDER MODELS FOR DETERMINING ARTERIAL COMPLIANCE

被引:0
|
作者
FINKELSTEIN, SM [1 ]
COHN, JN [1 ]
机构
[1] UNIV MINNESOTA,DEPT MED,DIV CARDIOVASC,MINNEAPOLIS,MN 55455
关键词
ARTERIAL VASCULAR MODELS; WINDKESSEL MODELS; ARTERIAL VASCULAR COMPLIANCE; CHARACTERISTIC IMPEDANCE;
D O I
暂无
中图分类号
R6 [外科学];
学科分类号
1002 ; 100210 ;
摘要
Background: Engineering models of the arterial vasculature have been used to describe vascular properties of resistance and compliance. These approaches have used either Fourier frequency analysis, based on transmission line equations, or time domain analysis of the circuit equations describing modified Windkessel models of the vasculature. Design: A third-order, four-element modified Windkessel model can reproduce arterial pressure waveforms, including both exponential and oscillatory pressure decays observed during the diastolic portion of the cardiac cycle. Method: A method to determine both capacitive and oscillatory compliance of the arterial vasculature was developed, and the effect of these compliance properties on the blood pressure waveform was examined.
引用
收藏
页码:S11 / S14
页数:4
相关论文
共 50 条
  • [31] Induced 3rd-order Spherochromatism
    Berner, A.
    Zhang, Y.
    Gross, H.
    OPTICAL DESIGN AND ENGINEERING VII, 2018, 10690
  • [32] STABILITY OF 3RD-ORDER SYSTEMS
    GEOZALOV, YI
    ISKENDERZADE, ZA
    IZVESTIYA AKADEMII NAUK AZERBAIDZHANSKOI SSR SERIYA FIZIKO-TEKHNICHESKIKH I MATEMATICHESKIKH NAUK, 1976, (06): : 18 - 22
  • [33] 3RD-ORDER EQUIVALENCE CLASSES
    WULFERT, E
    GREENWAY, DE
    DOUGHER, MJ
    PSYCHOLOGICAL RECORD, 1994, 44 (03): : 411 - 439
  • [34] 3RD-ORDER ABERRATIONS OF HOLOGRAMS
    NOWAK, J
    OPTICA APPLICATA, 1980, 10 (03) : 245 - 251
  • [35] 3RD-ORDER EQUATION FOR BISPINORS
    MARX, E
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 1974, 10 (04) : 253 - 260
  • [36] ANCILLARIES AND 3RD-ORDER SIGNIFICANCE
    FRASER, DAS
    REID, N
    UTILITAS MATHEMATICA, 1995, 47 : 33 - 53
  • [37] 3RD-ORDER MBPT GRADIENTS
    FITZGERALD, G
    HARRISON, R
    LAIDIG, WD
    BARTLETT, RJ
    JOURNAL OF CHEMICAL PHYSICS, 1985, 82 (09): : 4379 - 4380
  • [38] TORQUE OR 3RD-ORDER MECHANICS
    ISAACSON, RJ
    AMERICAN JOURNAL OF ORTHODONTICS AND DENTOFACIAL ORTHOPEDICS, 1994, 106 (03) : A21 - A22
  • [39] STABILITY OF 3RD-ORDER SYSTEMS
    JOSHI, SG
    SRIRANGARAJAN, HR
    SRINIVASAN, P
    JOURNAL OF SOUND AND VIBRATION, 1976, 48 (04) : 578 - 581
  • [40] ANALYSIS OF A 3RD-ORDER SYSTEM
    SINGH, V
    PROCEEDINGS OF THE IEEE, 1977, 65 (09) : 1404 - 1405