STATIONARY POINT SETS OF (Z2)K-MANIFOLDS

被引:0
|
作者
KOMIYA, K [1 ]
机构
[1] YAMAGUCHI UNIV,TOKYO,JAPAN
来源
PROCEEDINGS OF THE JAPAN ACADEMY | 1975年 / 51卷 / 03期
关键词
D O I
10.3792/pja/1195518667
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
引用
收藏
页码:159 / 162
页数:4
相关论文
共 50 条
  • [31] CALCULATION OF H'(BBO K!-Z2)
    CLOUGH, RR
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1970, 24 (01) : 32 - +
  • [32] Multiple parameter continuation:: Computing implicitly defined k-manifolds
    Henderson, ME
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2002, 12 (03): : 451 - 476
  • [33] A Z2 x Z2 standard model
    Blaszczyk, Michael
    Nibbelink, Stefan Groot
    Ratz, Michael
    Ruehle, Fabian
    Trapletti, Michele
    Vaudrevange, Patrick K. S.
    PHYSICS LETTERS B, 2010, 683 (4-5) : 340 - 348
  • [34] (Z2)k-actions with fixed point set of constant codimension 2k+2v+1
    Meng, Yuanyuan
    Wang, Yanying
    TOPOLOGY AND ITS APPLICATIONS, 2012, 159 (12) : 2909 - 2918
  • [35] AN INFINITE SUBALGEBRA OF EXTA(Z2 Z2
    MAHOWALD, M
    TANGORA, M
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1968, 132 (01) : 263 - &
  • [36] On normalized generating sets for GQC codes over Z2
    Bae, Sunghan
    Kang, Pyung-Lyun
    Li, Chengju
    FINITE FIELDS AND THEIR APPLICATIONS, 2017, 45 : 285 - 300
  • [37] F(Z,1 ,Z2 ) plus A(Z1 ,Z2 )G(Z1 ,Z2 ) equals H(Z1 ,Z2 )..
    Lai, Yhean-Sen
    IEEE transactions on circuits and systems, 1986, CAS-33 (05): : 542 - 544
  • [38] Contact topology and the structure of 5-manifolds with π1=Z2
    Geiges, H
    Thomas, CB
    ANNALES DE L INSTITUT FOURIER, 1998, 48 (04) : 1167 - +
  • [39] Quantum phase transition from Z2 x Z2 to Z2 topological order
    Zarei, Mohammad Hossein
    PHYSICAL REVIEW A, 2016, 93 (04)
  • [40] (Z2)K-ACTIONS AND CHARACTERISTIC NUMBERS
    KOSNIOWSKI, C
    STONG, RE
    INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1979, 28 (05) : 725 - 743