ON CLASSICAL AND QUANTUM INTEGRABLE FIELD-THEORIES ASSOCIATED TO KAC-MOODY CURRENT-ALGEBRAS

被引:45
|
作者
FREIDEL, L
MAILLET, JM
机构
[1] LPTHE, Université Pierre et Marie Curie, F-75252 Paris
关键词
HAMILTONIAN STRUCTURES; R-MATRIX;
D O I
10.1016/0370-2693(91)90479-A
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We present classical and quantum algebraic structures for two-dimensional integrable field theories associated to Kac-Moody current algebras. We obtain in particular classical and quantum discretized versions of such current algebras. The corresponding monodromy matrix is shown to satisfy extended quantum group relations, leading to integrable properties of these theories. We apply our constructions to the lattice non-abelian Toda field theory.
引用
收藏
页码:403 / 410
页数:8
相关论文
共 50 条
  • [31] Crystal bases for quantum generalized Kac-Moody algebras
    Jeong, K
    Kang, SJ
    Kashiwara, M
    PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 2005, 90 : 395 - 438
  • [32] Abstract Crystals for Quantum Generalized Kac-Moody Algebras
    Jeong, Kyeonghoon
    Kang, Seok-Jin
    Kashiwara, Masaki
    Shin, Dong-Uy
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2007, 2007
  • [33] Majid conjecture: quantum Kac-Moody algebras version
    Hu, Hongmei
    Hu, Naihong
    Xia, Limeng
    FRONTIERS OF MATHEMATICS IN CHINA, 2021, 16 (03) : 727 - 747
  • [34] Canonical bases for quantum generalized Kac-Moody algebras
    Kang, SJ
    Schiffmann, O
    ADVANCES IN MATHEMATICS, 2006, 200 (02) : 455 - 478
  • [35] QUANTUM DEFORMATIONS OF GENERALIZED KAC-MOODY ALGEBRAS AND THEIR MODULES
    KANG, SJ
    JOURNAL OF ALGEBRA, 1995, 175 (03) : 1041 - 1066
  • [36] Some gim algebras and the associated indefinite Kac-Moody algebras
    Lv, Rui
    Tan, Youjun
    JOURNAL OF ALGEBRA, 2015, 425 : 42 - 64
  • [37] Perfect Bases for Integrable Modules over Generalized Kac-Moody Algebras
    Seok-Jin Kang
    Se-jin Oh
    Euiyong Park
    Algebras and Representation Theory, 2011, 14 : 571 - 587
  • [38] Classical Whittaker modules for the affine Kac-Moody algebras AN(1)
    Chen, Hongjia
    Ge, Lin
    Li, Zheng
    Wang, Longhui
    ADVANCES IN MATHEMATICS, 2024, 454
  • [39] Quantum Duality Principle for Quantum Continuous Kac-Moody Algebras
    Gavarini, Fabio
    JOURNAL OF LIE THEORY, 2022, 32 (03) : 839 - 862
  • [40] Majid conjecture: quantum Kac-Moody algebras version
    Hongmei Hu
    Naihong Hu
    Limeng Xia
    Frontiers of Mathematics in China, 2021, 16 : 727 - 747