U-CYCLES IN n-PERSON TU-GAMES WITH ONLY 1, n - 1 AND n-PERSON PERMISSIBLE COALITIONS
被引:1
|
作者:
Carlos Cesco, Juan
论文数: 0引用数: 0
h-index: 0
机构:
UNSL CONICET, Inst Matemat Aplicada San Luis, Av Ejercito Andes 950, RA-5700 San Luis, ArgentinaUNSL CONICET, Inst Matemat Aplicada San Luis, Av Ejercito Andes 950, RA-5700 San Luis, Argentina
Carlos Cesco, Juan
[1
]
Lucia Cali, Ana
论文数: 0引用数: 0
h-index: 0
机构:
UN San Luis, Dept Matemat, San Luis, ArgentinaUNSL CONICET, Inst Matemat Aplicada San Luis, Av Ejercito Andes 950, RA-5700 San Luis, Argentina
Lucia Cali, Ana
[2
]
机构:
[1] UNSL CONICET, Inst Matemat Aplicada San Luis, Av Ejercito Andes 950, RA-5700 San Luis, Argentina
[2] UN San Luis, Dept Matemat, San Luis, Argentina
It has been recently proved that the non-existence of certain type of cycles of preimputation, fundamental cycles, is equivalent to the balancedness of a TU-games (Cesco (2003)). In some cases, the class of fundamental cycles can be narrowed and still obtain a characterization theorem. In this paper we prove that existence of maximal U-cycles, which are related to a transfer scheme designed for computing a point in the core of a game, is condition necessary and sufficient for a TU-game be non-balanced, provided n - 1 and n-person are the only coalitions with non-zero value. These games are strongly related to games with only 1, n - 1 and n-person permissible coalitions (Maschler (1963)).