PROPHET INEQUALITIES FOR BOUNDED NEGATIVELY DEPENDENT RANDOM-VARIABLES

被引:2
|
作者
SAMUELCAHN, E [1 ]
机构
[1] HEBREW UNIV JERUSALEM,DEPT STAT,IL-91905 JERUSALEM,ISRAEL
关键词
PROPHET INEQUALITY; OPTIMAL STOPPING; THRESHOLD RULES; NEGATIVE DEPENDENCE;
D O I
10.1016/0167-7152(91)90080-B
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
It is shown that if X(k) satisfy P(X(k) < a(k)\X1 < a1,..., X(k-1) < a(k-1)) is nondecreasing in a1,..., a(k-1), a negative dependence condition slightly weaker than CDS, and 0 less-than-or-equal-to X(k) less-than-or-equal-to 1, then E[max X(k)] less-than-or-equal-to 2V-V2, where V = sup EX(t), t a stopping rule, holds both for finite and infinite sequences X1, X2,.... Actually, here V can be replaced by the optimal value attainable by threshold rules.
引用
收藏
页码:213 / 216
页数:4
相关论文
共 50 条
  • [31] PROBABILITY INEQUALITIES FOR SUMS OF INDEPENDENT RANDOM-VARIABLES
    FUK, DK
    NAGAEV, SV
    [J]. THEORY OF PROBILITY AND ITS APPLICATIONS,USSR, 1971, 16 (04): : 643 - 660
  • [32] MOMENT INEQUALITIES FOR RANDOM-VARIABLES IN COMPUTATIONAL GEOMETRY
    DEVROYE, L
    [J]. COMPUTING, 1983, 30 (02) : 111 - 119
  • [33] LITTLEWOOD-OFFORD INEQUALITIES FOR RANDOM-VARIABLES
    LEADER, I
    RADCLIFFE, AJ
    [J]. SIAM JOURNAL ON DISCRETE MATHEMATICS, 1994, 7 (01) : 90 - 101
  • [34] MOMENT INEQUALITIES FOR MIXING SEQUENCES OF RANDOM-VARIABLES
    ROUSSAS, GG
    IOANNIDES, D
    [J]. STOCHASTIC ANALYSIS AND APPLICATIONS, 1987, 5 (01) : 61 - 120
  • [35] PROBABILITY INEQUALITIES FOR SERIES OF INDEPENDENT RANDOM-VARIABLES
    ANTONOV, SN
    [J]. THEORY OF PROBABILITY AND ITS APPLICATIONS, 1979, 24 (03) : 636 - 640
  • [36] INEQUALITIES FOR MOMENTS OF SUMS INDEPENDENT RANDOM-VARIABLES
    PETROV, VV
    [J]. VESTNIK LENINGRADSKOGO UNIVERSITETA SERIYA MATEMATIKA MEKHANIKA ASTRONOMIYA, 1989, (04): : 29 - 31
  • [37] EXPONENTIAL INEQUALITIES FOR BOUNDED RANDOM VARIABLES
    Huang, Guangyue
    Guo, Xin
    Du, Hongxia
    He, Yi
    Miao, Yu
    [J]. MATHEMATICA SLOVACA, 2015, 65 (06) : 1557 - 1570
  • [38] On the Kolmogorov inequalities for quadratic forms of dependent uniformly bounded random variables
    Eghbal, N.
    Amini, M.
    Bozorgnia, A.
    [J]. STATISTICS & PROBABILITY LETTERS, 2011, 81 (08) : 1112 - 1120
  • [39] SEQUENCES OF PAIRS OF DEPENDENT RANDOM-VARIABLES
    WITSENHAUSEN, HS
    [J]. SIAM JOURNAL ON APPLIED MATHEMATICS, 1975, 28 (01) : 100 - 113
  • [40] GROWTH OF SUMS OF DEPENDENT RANDOM-VARIABLES
    PETROV, VV
    [J]. TEORIYA VEROYATNOSTEI I YEYE PRIMENIYA, 1973, 18 (02): : 358 - 361