PROPHET INEQUALITIES FOR BOUNDED NEGATIVELY DEPENDENT RANDOM-VARIABLES

被引:2
|
作者
SAMUELCAHN, E [1 ]
机构
[1] HEBREW UNIV JERUSALEM,DEPT STAT,IL-91905 JERUSALEM,ISRAEL
关键词
PROPHET INEQUALITY; OPTIMAL STOPPING; THRESHOLD RULES; NEGATIVE DEPENDENCE;
D O I
10.1016/0167-7152(91)90080-B
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
It is shown that if X(k) satisfy P(X(k) < a(k)\X1 < a1,..., X(k-1) < a(k-1)) is nondecreasing in a1,..., a(k-1), a negative dependence condition slightly weaker than CDS, and 0 less-than-or-equal-to X(k) less-than-or-equal-to 1, then E[max X(k)] less-than-or-equal-to 2V-V2, where V = sup EX(t), t a stopping rule, holds both for finite and infinite sequences X1, X2,.... Actually, here V can be replaced by the optimal value attainable by threshold rules.
引用
收藏
页码:213 / 216
页数:4
相关论文
共 50 条