ABOUT THE BIVARIATE OPERATORS OF KANTOROVICH TYPE

被引:0
|
作者
Pop, O. T. [1 ]
Farcas, M. D. [1 ]
机构
[1] Natl Coll Mihai Eminescu, 5 Mihai Eminescu St, Satu Mare 440014, Romania
来源
关键词
Linear positive operators; modulus of continuity of the bivariate functions; mixed modulus of smoothness; bivariate operators of Kantorovich type;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The aim of this paper is to study the convergence and approximation properties of the bivariate operators and GBS operators of Kantorovich type.
引用
收藏
页码:43 / 52
页数:10
相关论文
共 50 条
  • [31] Approximation Properties of Bivariate Extension of q-Bernstein-Schurer-Kantorovich operators
    Acu, Ana Maria
    Muraru, Carmen Violeta
    RESULTS IN MATHEMATICS, 2015, 67 (3-4) : 265 - 279
  • [32] Approximation Process Based on Parametric Generalization of Schurer–Kantorovich Operators and their Bivariate Form
    Md. Nasiruzzaman
    H. M. Srivastava
    S. A. Mohiuddine
    Proceedings of the National Academy of Sciences, India Section A: Physical Sciences, 2023, 93 : 31 - 41
  • [33] Approximation by bivariate Bernstein-Kantorovich-Stancu operators that reproduce exponential functions
    Su, Lian-Ta
    Kanat, Kadir
    Sofyalioglu Aksoy, Melek
    Kisakol, Merve
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2024, 2024 (01)
  • [34] Approximation Properties of Bivariate Extension of q-Bernstein–Schurer–Kantorovich operators
    Ana Maria Acu
    Carmen Violeta Muraru
    Results in Mathematics, 2015, 67 : 265 - 279
  • [35] Approximation properties of bivariate extension of q-Szasz-Mirakjan-Kantorovich operators
    Orkcu, Mediha
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2013,
  • [36] Kantorovich-type operators associated with a variant of Jain operators
    Agratini, Octavian
    Dogru, Ogun
    STUDIA UNIVERSITATIS BABES-BOLYAI MATHEMATICA, 2021, 66 (02): : 279 - 288
  • [37] Bivariate generalized Kantorovich-type exponential sampling series
    Acar, Tuncer
    Eke, Abdulkadir
    Kursun, Sadettin
    REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2024, 118 (01)
  • [38] The Bezier variant of Kantorovich type λ-Bernstein operators
    Cai, Qing-Bo
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2018,
  • [39] The Voronovskaja type theorem for an extension of Kantorovich operators
    Miclaus, Dan
    Pop, Ovidiu T.
    Barbosu, Dan
    ANNALS OF THE UNIVERSITY OF CRAIOVA-MATHEMATICS AND COMPUTER SCIENCE SERIES, 2010, 37 (04): : 29 - 36
  • [40] Bivariate generalization of q-Bernstein-Kantorovich type operator
    Sharma, Preeti
    Mishra, Vishnu Narayan
    COGENT MATHEMATICS, 2016, 3