AN EQUIVALENT BOTTOM FOR USE WITH THE SPLIT-STEP ALGORITHM

被引:8
|
作者
BUCKER, HP
机构
来源
关键词
D O I
10.1121/1.388983
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
引用
收藏
页码:486 / 491
页数:6
相关论文
共 50 条
  • [31] An index theorem for split-step quantum walks
    Matsuzawa, Yasumichi
    QUANTUM INFORMATION PROCESSING, 2020, 19 (08)
  • [32] Split-step solitons in long fiber links
    Driben, R
    Malomed, BA
    OPTICS COMMUNICATIONS, 2000, 185 (4-6) : 439 - 456
  • [33] UHF Propagation Prediction in Smooth Homogenous Earth Using Split-step Fourier Algorithm
    Hosseini, Seyyed Reza
    Shirazi, Reza Sarraf
    Kiaee, A.
    Pahlavan, P.
    Sorkherizi, M. Sharifi
    PROCEEDINGS OF PROGRESS IN ELECTROMAGNETICS RESEARCH SYMPOSIUM (PIERS 2012), 2012, : 685 - 689
  • [35] An improved implicit split-step algorithm for dispersive band-limited FDTD applications
    Ramadan, Omar
    IEEE MICROWAVE AND WIRELESS COMPONENTS LETTERS, 2008, 18 (08) : 497 - 499
  • [36] SPLIT-STEP FINITE-DIFFERENCE AND SPLIT-STEP LANCZOS ALGORITHMS FOR SOLVING ALTERNATIVE HIGHER-ORDER PARABOLIC EQUATIONS
    YEVICK, D
    THOMSON, DJ
    JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 1994, 96 (01): : 396 - 405
  • [37] Study on a new Split-Step Fourier algorithm for optical fiber transmission systems simulations
    Meirelles, TT
    Rieznik, AA
    Fragnito, HL
    2005 SBMO/IEEE MTT-S INTERNATIONAL MICROWAVE AND OPTOELECTRONICS CONFERENCE (IMOC), 2005, : 98 - 100
  • [38] A split-step reconstruction technique for the analysis of soliton propagation
    Shum, P
    Yu, SF
    Li, EH
    PHYSICS AND SIMULATION OF OPTOELECTRONIC DEVICES VIII, PTS 1 AND 2, 2000, 3944 : 953 - 961
  • [39] A hybrid split-step/finite-difference PE algorithm for variable-density media
    Yevick, D
    Thomson, DJ
    JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 1997, 101 (03): : 1328 - 1335
  • [40] Split-step θ-method for stochastic delay differential equations
    Cao, Wanrong
    Hao, Peng
    Zhang, Zhongqiang
    APPLIED NUMERICAL MATHEMATICS, 2014, 76 : 19 - 33