共 50 条
THE TATE-CONJECTURE FOR GENERIC ABELIAN-VARIETIES
被引:0
|作者:
ABDULALI, S
机构:
[1] Department of Mathematics, University of Toronto, Toronto
关键词:
D O I:
10.1112/blms/26.5.417
中图分类号:
O1 [数学];
学科分类号:
0701 ;
070101 ;
摘要:
Let A --> V be a Kuga fibre variety of Mumford's Hodge type, defined over a finitely generated subfield of C, and let <(eta)under bar> be the generic point of V. We show that any element of H-et(2r)(A(eta), Q(l))(r) which is invariant under Gal(k(eta)/E), for some finite extension E of k(eta), is fixed by the semisimple part of the Hodge group of A(eta). If A --> V satisfies the H-2-condition, then the Hodge and Tate conjectures are equivalent for A(eta), and the Mumford-Tate conjecture is true.
引用
收藏
页码:417 / 421
页数:5
相关论文