BIVARIATE POLYNOMIAL NATURAL SPLINE INTERPOLATION TO SCATTERED DATA

被引:1
|
作者
LI, YS [1 ]
GUAN, LT [1 ]
机构
[1] ZHONGSHAN UNIV,DEPT COMP SCI,GUANGZHOU,PEOPLES R CHINA
来源
关键词
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
By means of the theory of spline interpolation in Hilbert spaces, the bivariate polynomial natural spline interpolation to scattered data is constructed. The method can easily be carried out on a computer, and parallelly generalized to high dimensional cases as well. The results can be used for numerical integration in higher dimensions and numerical solution of partial differential equations, and so on.
引用
收藏
页码:135 / 146
页数:12
相关论文
共 50 条
  • [21] Hermitian spline interpolation for bivariate functions
    Scheffold, E
    ACTA MATHEMATICA HUNGARICA, 2001, 92 (04) : 347 - 358
  • [22] Approximation order of bivariate spline interpolation
    Nurnberger, G
    JOURNAL OF APPROXIMATION THEORY, 1996, 87 (02) : 117 - 136
  • [23] LACUNARY POLYNOMIAL SPLINE INTERPOLATION
    DEMKO, S
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1974, 21 (01): : A160 - A160
  • [24] LACUNARY POLYNOMIAL SPLINE INTERPOLATION
    DEMKO, S
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 1976, 13 (03) : 369 - 381
  • [25] Recursive Schemes for Scattered Data Interpolation via Bivariate Continued Fractions
    Jiang QIAN
    Fan WANG
    Zhuojia FU
    Yunbiao WU
    Journal of Mathematical Research with Applications, 2016, 36 (05) : 583 - 607
  • [26] On univariate and bivariate polynomial spline approximation
    Dagnino, C
    Demichelis, V
    Lamberti, P
    Pittaluga, G
    Sacripante, L
    ANALISI NUMERICA: METODI E SOFTWARE MATEMATICO, SUPPLEMENTO, 2000, 46 : 455 - 466
  • [27] Smooth interpolation to scattered data by bivariate piecewise polynomials of odd degree
    Meyling, R.H.J.Gmelig
    Pfluger, P.R.
    Computer Aided Geometric Design, 1990, 7 (05) : 439 - 458
  • [28] Numerical differentiation on scattered data through multivariate polynomial interpolation
    Dell'Accio, Francesco
    Di Tommaso, Filomena
    Siar, Najoua
    Vianello, Marco
    BIT NUMERICAL MATHEMATICS, 2022, 62 (03) : 773 - 801
  • [29] Numerical differentiation on scattered data through multivariate polynomial interpolation
    Francesco Dell’Accio
    Filomena Di Tommaso
    Najoua Siar
    Marco Vianello
    BIT Numerical Mathematics, 2022, 62 : 773 - 801
  • [30] L1 Spline Methods for Scattered Data Interpolation and Approximation
    Ming-Jun Lai
    Paul Wenston
    Advances in Computational Mathematics, 2004, 21 : 293 - 315