CYANOPEPTOLINS, NEW DEPSIPEPTIDES FROM THE CYANOBACTERIUM MICROCYSTIS SP PCC 7806

被引:140
|
作者
MARTIN, C
OBERER, L
INO, T
KONIG, WA
BUSCH, M
WECKESSER, J
机构
[1] ALBERT LUDWIGS UNIV,INST BIOL 2,D-79104 FREIBURG,GERMANY
[2] SANDOZ PHARMA AG,PRECLIN RES,CH-4002 BASEL,SWITZERLAND
[3] UNIV HAMBURG,INST ORGAN CHEM,D-20146 HAMBURG,GERMANY
[4] MAX PLANCK INST IMMUNBIOL,D-79108 FREIBURG,GERMANY
来源
JOURNAL OF ANTIBIOTICS | 1993年 / 46卷 / 10期
关键词
D O I
10.7164/antibiotics.46.1550
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Four depsipeptides (peptide lactones), called cyanopeptolins A, B, C and D, have been isolated from the cyanobacterium Microcystis sp. PCC 7806. They possess identical structures consisting of cyclic L-glutamic acid-gamma-aldehyde, L-leucine, N-methyl-phenylalanine, L-valine, L-threonine, L-aspartic acid, hexanoic acid and a variable basic amino acid. This variable amino acid can be L-arginine (cyanopeptolin A), L-lysine (cyanopeptolin B), N(epsilon)-methyl-L-lysine (cyanopeptolin C) and N(epsilon),N(epsilon)-dimethyl-L-lysine (cyanopeptolin D), respectively. The L-glutamic acid-gamma-aldehyde and the amino group of L-leucine form an unusual 3-amino-6-hydroxy-2-oxo-1-piperidine system. L-Threonine is connected to L-valine via its hydroxy-group forming an ester bonding. The hexanoic acid residue is attached to the N-terminal aspartic acid residue which is not a part of the ring structure. The isolation procedure of the four cyanopeptolins as well as structure elucidation are described. Amino acid analysis, GC/MS analysis, FAB-MS and several NMR techniques were used to reveal the structures.
引用
收藏
页码:1550 / 1556
页数:7
相关论文
共 50 条
  • [31] Two new microcyclamides from a water bloom of the cyanobacterium Microcystis sp.
    Zafrir-Ilan, Ella
    Carmeli, Shmuel
    TETRAHEDRON LETTERS, 2010, 51 (50) : 6602 - 6604
  • [32] Characterization of proteases in guts of Daphnia magna and their inhibition by Microcystis aeruginosa PCC 7806
    Agrawal, MK
    Zitt, A
    Bagchi, D
    Weckesser, J
    Bagchi, SN
    von Elert, E
    ENVIRONMENTAL TOXICOLOGY, 2005, 20 (03) : 314 - 322
  • [33] Impact of temperature on the temporal dynamics of microcystin in Microcystis aeruginosa PCC7806
    Roy, Souvik
    Guljamow, Arthur
    Dittmann, Elke
    FRONTIERS IN MICROBIOLOGY, 2023, 14
  • [34] Effect of nitrite on growth and microcystins production of Microcystis aeruginosa PCC7806
    Weimin Chen
    Hao Liu
    Qingmin Zhang
    Shugui Dai
    Journal of Applied Phycology, 2011, 23 : 665 - 671
  • [35] Non-canonical localization of RubisCO under high-light conditions in the toxic cyanobacterium Microcystis aeruginosa PCC7806
    Barchewitz, Tino
    Guljamow, Arthur
    Meissner, Sven
    Timm, Stefan
    Henneberg, Manja
    Baumann, Otto
    Hagemann, Martin
    Dittmann, Elke
    ENVIRONMENTAL MICROBIOLOGY, 2019, 21 (12) : 4836 - 4851
  • [36] Effect of nitrite on growth and microcystins production of Microcystis aeruginosa PCC7806
    Chen, Weimin
    Liu, Hao
    Zhang, Qingmin
    Dai, Shugui
    JOURNAL OF APPLIED PHYCOLOGY, 2011, 23 (04) : 665 - 671
  • [37] Impact of inorganic carbon availability on microcystin production by microcystis aeruginosa PCC 7806
    Jaehnichen, Sabine
    Ihle, Tilo
    Petzoldt, Thomas
    Benndorf, Juergen
    APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 2007, 73 (21) : 6994 - 7002
  • [38] Optimized electroporation-induced transformation in Microcystis aeruginosa PCC7806
    El Semary, Nermin Adel
    BIOTECHNOLOGIE AGRONOMIE SOCIETE ET ENVIRONNEMENT, 2010, 14 (01): : 149 - 152
  • [39] A Day in the Life of Microcystis aeruginosa Strain PCC 7806 as Revealed by a Transcriptomic Analysis
    Straub, Cecile
    Quillardet, Philippe
    Vergalli, Julia
    de Marsac, Nicole Tandeau
    Humbert, Jean-Francois
    PLOS ONE, 2011, 6 (01):
  • [40] Physiological Responses of Microcystis aeruginosa PCC7806 to Nonanoic Acid Stress
    Shao, Ji-Hai
    Wu, Xing-Qiang
    Li, Ren-Hui
    ENVIRONMENTAL TOXICOLOGY, 2009, 24 (06) : 610 - 617