THE ASYMPTOTIC-BEHAVIOR OF THE STIRLING NUMBERS OF THE FIRST KIND

被引:28
|
作者
WILF, HS
机构
[1] University of Pennsylvania
关键词
D O I
10.1016/0097-3165(93)90103-F
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
[No abstract available]
引用
收藏
页码:344 / 349
页数:6
相关论文
共 50 条
  • [31] Extended Stirling numbers of the first kind associated with Daehee numbers and polynomials
    Taekyun Kim
    Dae San Kim
    Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 2019, 113 : 1159 - 1171
  • [32] LOWER S-NUMBERS AND THEIR ASYMPTOTIC-BEHAVIOR
    RAKOVCEVIC, V
    ZEMANEK, J
    STUDIA MATHEMATICA, 1988, 91 (03) : 231 - 239
  • [33] A COMBINATORIAL APPROACH TO THE STIRLING NUMBERS OF THE FIRST KIND WITH HIGHER LEVEL
    Komatsu, Takao
    Ramirez, Jose L.
    Villamizar, Diego
    STUDIA SCIENTIARUM MATHEMATICARUM HUNGARICA, 2021, 58 (03) : 293 - 307
  • [34] Multi-Lah numbers and multi-Stirling numbers of the first kind
    San Kim, Dae
    Kim, Hye Kyung
    Kim, Taekyun
    Lee, Hyunseok
    Park, Seongho
    ADVANCES IN DIFFERENCE EQUATIONS, 2021, 2021 (01)
  • [35] Multi-Lah numbers and multi-Stirling numbers of the first kind
    Dae San Kim
    Hye Kyung Kim
    Taekyun Kim
    Hyunseok Lee
    Seongho Park
    Advances in Difference Equations, 2021
  • [36] On the p-adic valuation of stirling numbers of the first kind
    Leonetti, P.
    Sanna, C.
    ACTA MATHEMATICA HUNGARICA, 2017, 151 (01) : 217 - 231
  • [37] On the p-adic properties of Stirling numbers of the first kind
    S. F. Hong
    M. Qiu
    Acta Mathematica Hungarica, 2020, 161 : 366 - 395
  • [38] Variations of central limit theorems and Stirling numbers of the first kind
    Heim, Bernhard
    Neuhauser, Markus
    DISCRETE MATHEMATICS LETTERS, 2023, 12 : 54 - 61
  • [39] On the p-adic properties of Stirling numbers of the first kind
    Hong, S. F.
    Qiu, M.
    ACTA MATHEMATICA HUNGARICA, 2020, 161 (01) : 366 - 395
  • [40] 2-Adic valuations of Stirling numbers of the first kind
    Qiu, Min
    Hong, Shaofang
    INTERNATIONAL JOURNAL OF NUMBER THEORY, 2019, 15 (09) : 1827 - 1855