DYNAMIC CRITICAL EXPONENT OF THE 2-DIMENSIONAL ISING-MODEL

被引:33
|
作者
DAMMANN, B
REGER, JD
机构
[1] Institut für Physik Johannes Gutenberg Universität Mainz, Mainz
来源
EUROPHYSICS LETTERS | 1993年 / 21卷 / 02期
关键词
D O I
10.1209/0295-5075/21/2/006
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We derive twenty nontrivial terms of the high-temperature series expansion for the linear relaxation time tau of the time-displaced correlation function C(t) = [m(0) m(t)] of the magnetization m(t) in the two-dimensional nearest-neighbour ferromagnetic Ising model on the square lattice. We study the dynamics introduced by Glauber and compute the longest (characteristic) relaxation time of C(t). We analyse the series by using unbiased and biased methods, such as the ratio method, Pade approximants and generalized differential approximants. It is reassuring that all the methods yield compatible results providing the estimate for the dynamical critical exponent: z = 2.183 +/- 0.005.
引用
收藏
页码:157 / 162
页数:6
相关论文
共 50 条