A REMARK ON THE NONRELATIVISTIC LIMIT FOR SEMILINEAR DIRAC EQUATIONS

被引:2
|
作者
MATSUYAMA, T
机构
[1] General Education, Hakodate National College of Technology, Hakodate, Hokkaido, 042, Tokura-cho
关键词
SEMILINEAR DIRAC EQUATION; NONLINEAR SCHRODINGER EQUATION; NONRELATIVISTIC LIMIT;
D O I
10.1016/0362-546X(94)00235-A
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
[No abstract available]
引用
收藏
页码:1139 / 1146
页数:8
相关论文
共 50 条
  • [41] Newton-like equations for a radiating particle: The nonrelativistic limit
    Lluis Gonzalez, Daniel
    Salinas Delgado, Alejandro O.
    Montes de Oca, Alejandro Cabo
    PHYSICAL REVIEW D, 2022, 105 (02)
  • [42] NONRELATIVISTIC LIMIT OF SOLUTIONS OF RADIAL QUASI-POTENTIAL EQUATIONS
    VU, XM
    ZHIDKOV, EP
    KADYSHEVSKII, VG
    THEORETICAL AND MATHEMATICAL PHYSICS, 1986, 67 (01) : 418 - 423
  • [43] UNIFORMLY ACCURATE NESTED PICARD ITERATIVE INTEGRATORS FOR THE DIRAC EQUATION IN THE NONRELATIVISTIC LIMIT REGIME
    Cai, Yongyong
    Wang, Yan
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2019, 57 (04) : 1602 - 1624
  • [44] Supersymmetry of the planar Dirac-Deser-Jackiw-Templeton system and of its nonrelativistic limit
    Horvathy, Peter A.
    Plyushchay, Mikhail S.
    Valenzuela, Mauricio
    JOURNAL OF MATHEMATICAL PHYSICS, 2010, 51 (09)
  • [45] Optimal Resolution Methods for the Klein-Gordon-Dirac System in the Nonrelativistic Limit Regime
    Yi, Wenfan
    Ruan, Xinran
    Su, Chunmei
    JOURNAL OF SCIENTIFIC COMPUTING, 2019, 79 (03) : 1907 - 1935
  • [46] Nonrelativistic Limit of Ground State Solutions for Nonlinear Dirac-Klein-Gordon Systems
    Dong, Xiaojing
    Tang, Zhongwei
    MINIMAX THEORY AND ITS APPLICATIONS, 2022, 7 (02): : 253 - 276
  • [47] Nonrelativistic limit in the 2+1 Dirac oscillator: A Ramsey-interferometry effect
    Bermudez, A.
    Martin-Delgado, M. A.
    Luis, A.
    PHYSICAL REVIEW A, 2008, 77 (03):
  • [48] Failure of single-configuration Dirac-Fock wave functions in the nonrelativistic limit
    Kim, YK
    Indelicato, P
    Desclaux, JP
    JOURNAL OF THE KOREAN PHYSICAL SOCIETY, 1999, 35 (03) : 165 - 167
  • [49] On a class of semilinear fractional elliptic equations involving outside Dirac data
    Chen, Huyuan
    Hajaiej, Hichem
    Wang, Ying
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2015, 125 : 639 - 658
  • [50] A short remark on inviscid limit of the stochastic Navier–Stokes equations
    Abhishek Chaudhary
    Guy Vallet
    Zeitschrift für angewandte Mathematik und Physik, 2023, 74