POLYNOMIAL OPERATORS, STIELTJES CONVOLUTION, AND FRACTIONAL CALCULUS IN HEREDITARY MECHANICS

被引:121
|
作者
KOELLER, RC
机构
[1] Department of Mechanical Engineering, University of Wisconsin-Platterville, Platteville, 53818, WI, United States
关键词
MATHEMATICAL TECHNIQUES - Differential Equations - VISCOELASTICITY;
D O I
10.1007/BF01176603
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
Fractional calculus is used to describe the general behavior of materials with memory. An expression for the fractional derivative or the fractional integral is developed in terms of the Stieltjes convolution and the Riesz distribution. The general fractional calculus polynomial operator constitutive equation is reduced to a Stieltjes convolution. A constitutive equation which depends on a memory parameter for an isotropic viscoelastic material is presented.
引用
收藏
页码:251 / 264
页数:14
相关论文
共 50 条
  • [41] Convolution Operators with Fractional Measures Associated to Holomorphic Functions
    E. Ferreyra
    T. Godoy
    M. Urciuolo
    Acta Mathematica Hungarica, 2001, 92 : 27 - 38
  • [42] New integral operators for conformable fractional calculus with applications
    Bezziou, Mohamed
    Dehmani, Zoubir
    JOURNAL OF INTERDISCIPLINARY MATHEMATICS, 2022, 25 (04) : 927 - 940
  • [43] On certain fractional calculus operators and applications in mathematical physics
    Samraiz, Muhammad
    Perveen, Zahida
    Abdeljawad, Thabet
    Iqbal, Sajid
    Naheed, Saima
    PHYSICA SCRIPTA, 2020, 95 (11)
  • [44] On a Class of Positive Definite Operators and Their Application in Fractional Calculus
    Aleroev, Temirkhan
    AXIOMS, 2022, 11 (06)
  • [45] Generalized Fractional Calculus Operators and the pRq(λ,η;z) Function
    Pal, Ankit
    Jana, R. K.
    Shukla, A. K.
    IRANIAN JOURNAL OF SCIENCE AND TECHNOLOGY TRANSACTION A-SCIENCE, 2020, 44 (06): : 1815 - 1825
  • [46] (k, s)-fractional integral operators in multiplicative calculus
    Zhang, Xiaohua
    Peng, Yu
    Du, Tingsong
    CHAOS SOLITONS & FRACTALS, 2025, 195
  • [47] Certain operators of fractional calculus and their applications to differential equations
    Lin, SD
    Tu, ST
    Srivastava, HM
    Wang, PY
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2002, 44 (12) : 1557 - 1565
  • [48] Absorptive Repetitive Filters with Operators of Generalized Fractional Calculus
    Nikolova, Nina
    Nikolov, Emil
    CYBERNETICS AND INFORMATION TECHNOLOGIES, 2013, 13 (04) : 42 - 53
  • [49] A functional calculus and fractional powers for multivalued linear operators
    Martínez, C
    Sanz, M
    Pastor, J
    OSAKA JOURNAL OF MATHEMATICS, 2000, 37 (03) : 551 - 576
  • [50] A SERIES RELATION BY MEANS OF CERTAIN FRACTIONAL CALCULUS OPERATORS
    RAINA, RK
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 1990, 21 (02): : 172 - 175