A REGULARIZATION FORMULA FOR A PERTURBED 2-DOMAIN PROBLEM IN POLAR COORDINATES

被引:0
|
作者
BOLLERMANN, W
机构
来源
关键词
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
引用
收藏
页码:T350 / T353
页数:4
相关论文
共 50 条
  • [41] The family of potentials admitting integration of the perturbed two-body problem in regular coordinates
    S. M. Poleshchikov
    A. V. Zhubr
    Cosmic Research, 2008, 46 : 202 - 214
  • [42] Extended-domain-Lavrentiev's regularization for the Cauchy problem
    Ben Belgacem, Faker
    Du, Duc Thang
    Jelassi, Faten
    INVERSE PROBLEMS, 2011, 27 (04)
  • [43] On a singularly perturbed Steklov problem in a domain perforated along the boundary
    Chechkin, Gregory A.
    Apice, Ciro D'
    De Maio, Umberto
    Gadyl'shin, Rustem R.
    COMPTES RENDUS MECANIQUE, 2016, 344 (01): : 12 - 18
  • [44] Polar Coordinates for the 3/2 Stochastic Volatility Model
    Nekoranik, Paul
    MATHEMATICAL FINANCE, 2025,
  • [45] O(2) model in polar coordinates at nonzero temperature
    Grahl, M.
    Seel, E.
    Giacosa, F.
    Rischke, D. H.
    PHYSICAL REVIEW D, 2013, 87 (09):
  • [46] Computational Performance Comparing of the State Estimation Problem Statementes in Polar and Rectangular Coordinates
    Polyakov, Ilya
    Pazderin, Andrey
    Polyakova, Olga
    2019 16TH CONFERENCE ON ELECTRICAL MACHINES, DRIVES AND POWER SYSTEMS (ELMA), 2019,
  • [47] STABILITY, RECONSTRUCTION FORMULA AND REGULARIZATION FOR AN INVERSE SOURCE HYPERBOLIC PROBLEM BY A CONTROL METHOD
    YAMAMOTO, M
    INVERSE PROBLEMS, 1995, 11 (02) : 481 - 496
  • [48] Quaternion Regularization of the Equations of the Perturbed Spatial Restricted Three-Body Problem: I
    Chelnokov, Yu. N.
    MECHANICS OF SOLIDS, 2017, 52 (06) : 613 - 639
  • [49] Quaternion Regularization of the Equations of the Perturbed Spatial Restricted Three-Body Problem: I
    Yu. N. Chelnokov
    Mechanics of Solids, 2017, 52 : 613 - 639
  • [50] Regularization of the Perturbed Spatial Restricted Three-Body Problem by L-Transformations
    S. M. Poleshchikov
    Cosmic Research, 2018, 56 : 151 - 163