Computing the eigenvalues of symmetric H-2-matrices by slicing the spectrum

被引:3
|
作者
Benner, Peter [1 ]
Boerm, Steffen [2 ]
Mach, Thomas [3 ]
Reimer, Knut [2 ]
机构
[1] Max Planck Inst Dynam Complex Tech Syst, D-39106 Magdeburg, Germany
[2] Univ Kiel, Inst Informat, Christian Albrechts Pl 4, D-24118 Kiel, Germany
[3] Katholieke Univ Leuven, Dept Comp Sci, B-3001 Heverlee, Leuven, Belgium
关键词
H-2-matrices; Symmetric generalized eigenproblem; Slicing the spectrum;
D O I
10.1007/s00791-015-0238-y
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The computation of eigenvalues of large-scale matrices arising from finite element discretizations has gained significant interest in the last decade (Knyazev et al. in Numerical solution of PDE eigenvalue problems, vol 56. Mathematisches Forschungsinstitut, Oberwolfach, 2013). Here we present an new algorithm based on slicing the spectrum that takes advantage of the rank structure of resolvent matrices in order to compute m eigenvalues of the generalized symmetric eigenvalue problem in O(nm log(alpha) n) operations, where alpha > 0 is a small constant.
引用
收藏
页码:271 / 282
页数:12
相关论文
共 50 条
  • [41] LOCATING EIGENVALUES OF SYMMETRIC MATRICES- A SURVEY*
    Hoppen, Carlos
    Jacobs, David
    Trevisan, Vilmar
    ELECTRONIC JOURNAL OF LINEAR ALGEBRA, 2024, 40 : 81 - 139
  • [42] On the Geometry of the Set of Symmetric Matrices with Repeated Eigenvalues
    Breiding P.
    Kozhasov K.
    Lerario A.
    Arnold Mathematical Journal, 2018, 4 (3-4) : 423 - 443
  • [43] The eigenvalues of very sparse random symmetric matrices
    Juozulynas A.
    Lithuanian Mathematical Journal, 2004, 44 (1) : 62 - 70
  • [44] Integer symmetric matrices having all their eigenvalues in the interval [-2,2]
    Mckee, James
    Smyth, Chris
    JOURNAL OF ALGEBRA, 2007, 317 (01) : 260 - 290
  • [45] Homotopy method for the eigenvalues of symmetric tridiagonal matrices
    Brockman, Philip
    Carson, Timothy
    Cheng, Yun
    Elgindi, T. M.
    Jensen, K.
    Zhoun, X.
    Elgindi, M. B. M.
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2013, 237 (01) : 644 - 653
  • [46] Factorizations and eigenvalues of fibonacci and symmetric fibonacci matrices
    Lee, GY
    Kim, JS
    Lee, SG
    FIBONACCI QUARTERLY, 2002, 40 (03): : 203 - 211
  • [47] IMPROVEMENT OF BOUNDS FOR EIGENVALUES OF SYMMETRIC TRIDIAGONAL MATRICES
    ALEFELD, G
    HERZBERG.J
    ANGEWANDTE INFORMATIK, 1974, (01): : 27 - 35
  • [49] ON FINDING EIGENVALUES OF REAL SYMMETRIC TRIDIAGONAL MATRICES
    FOX, AJ
    JOHNSON, FA
    COMPUTER JOURNAL, 1966, 9 (01): : 98 - &
  • [50] On the codimension of the variety of symmetric matrices with multiple eigenvalues
    Dana M.
    Ikramov Kh.D.
    Journal of Mathematical Sciences, 2006, 137 (3) : 4780 - 4786