Monadic Sigma(1)(1) and Modal Logic with Quantified Binary Relations

被引:1
|
作者
Hella, Lauri [1 ]
Kuusisto, Antti [1 ]
机构
[1] Univ Tampere, Dept Math & Stat, Tampere, Finland
基金
芬兰科学院;
关键词
Monadic Sigma(1)(1); Boolean modal logic; expressive power; decidability;
D O I
10.1016/j.entcs.2010.04.013
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We investigate the expressive power of a range of modal logics extended with second-order prenex quantification of binary and unary relations. Our principal result is that Sigma(1)(1) (BML=), i.e., Boolean modal logic extended with the identity modality and existential prenex quantification of binary and unary relations, translates into monadic Sigma(1)(1). We also briefly discuss a variety of decidability results in multimodal logic implied by our result.
引用
下载
收藏
页码:173 / 188
页数:16
相关论文
共 50 条