Local Computation of PageRank Contributions

被引:23
|
作者
Andersen, Reid [1 ]
Borgs, Christian [2 ]
Chayes, Jennifer [2 ]
Hopcroft, John [3 ]
Mirrokni, Vahab [4 ]
Teng, Shang-Hua [5 ]
机构
[1] Microsoft, One Microsoft Way, Redmond, WA 98052 USA
[2] Microsoft Res New England, Cambridge, MA 02142 USA
[3] Cornell Univ, Comp Sci Dept, Ithaca, NY 14853 USA
[4] NYC, Res Grp, Google Inc, New York, NY USA
[5] Boston Univ, Dept Comp Sci, Boston, MA USA
关键词
D O I
10.1080/15427951.2008.10129302
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Motivated by the problem of detecting link-spam, we consider the following graph- theoretic primitive: Given a webgraph G, a vertex v in G, and a parameter d. (0, 1), compute the set of all vertices that contribute to v at least a delta-fraction of v's PageRank. We call this set the delta-contributing set of v. To this end, we define the contribution vector of v to be the vector whose entries measure the contributions of every vertex to the PageRank of v. A local algorithm is one that produces a solution by adaptively examining only a small portion of the input graph near a specified vertex. We give an efficient local algorithm that computes an is an element of-approximation of the contribution vector for a given vertex by adaptively examining O(1/is an element of) vertices. Using this algorithm, we give a local approximation algorithm for the primitive defined above. Specifically, we give an algorithm that returns a set containing the delta-contributing set of v and at most O(1/delta) vertices from the delta/2-contributing set of v, and that does so by examining at most O(1/delta) vertices. We also give a local algorithm for solving the following problem: If there exist k vertices that contribute a rho-fraction to the PageRank of v, find a set of k vertices that contribute at least a (rho-is an element of)-fraction to the PageRank of v. In this case, we prove that our algorithm examines at most O(k/is an element of) vertices.
引用
收藏
页码:23 / 45
页数:23
相关论文
共 50 条
  • [31] Efficient Algorithms for Personalized PageRank Computation: A Survey
    Yang, Mingji
    Wang, Hanzhi
    Wei, Zhewei
    Wang, Sibo
    Wen, Ji-Rong
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2024, 36 (09) : 4582 - 4602
  • [32] Distributed PageRank computation with improved round complexities
    Luo, Siqiang
    Wu, Xiaowei
    Kao, Ben
    INFORMATION SCIENCES, 2022, 607 : 109 - 125
  • [33] Incremental Iteration Method for Fast PageRank Computation
    Kim, Kyung Soo
    Choi, Yong Suk
    ACM IMCOM 2015, Proceedings, 2015,
  • [34] A Distributed Randomized Approach for the PageRank Computation: Part 1
    Ishii, Hideaki
    Tempo, Roberto
    47TH IEEE CONFERENCE ON DECISION AND CONTROL, 2008 (CDC 2008), 2008, : 3523 - 3528
  • [35] Fast PageRank computation via a sparse linear system
    Del Corso, GM
    Gullí, A
    Romani, F
    ALGORITHMS AND MODELS FOR THE WEB-GRAPHS, PROCEEDINGS, 2004, 3243 : 118 - 130
  • [36] Effective Computation of a Feedback Arc Set Using PageRank
    Geladaris V.
    Lionakis P.
    Tollis I.G.
    Journal of Graph Algorithms and Applications, 2023, 27 (08) : 737 - 757
  • [37] On new PageRank computation methods using quantum computing
    Chapuis-Chkaiban, Theodore
    Toffano, Zeno
    Valiron, Benoit
    QUANTUM INFORMATION PROCESSING, 2023, 22 (03)
  • [38] Efficient hybrid PageRank centrality computation for multilayer networks
    Shen, Zhao-Li
    Jiao, Yue-Hao
    Wei, Yi-Kun
    Wend, Chun
    Carpentieri, Bruno
    CHAOS SOLITONS & FRACTALS, 2025, 192
  • [39] Fast PageRank Computation via a Sparse Linear System
    Del Corso, Gianna M.
    Gulli, Antonio
    Romani, Francesco
    INTERNET MATHEMATICS, 2005, 2 (03) : 251 - 273
  • [40] Distributed Randomized PageRank Computation Based on Web Aggregation
    Ishii, Hideaki
    Tempo, Roberto
    Bai, Er-Wei
    Dabbene, Fabrizio
    PROCEEDINGS OF THE 48TH IEEE CONFERENCE ON DECISION AND CONTROL, 2009 HELD JOINTLY WITH THE 2009 28TH CHINESE CONTROL CONFERENCE (CDC/CCC 2009), 2009, : 3026 - 3031