Local Computation of PageRank Contributions

被引:23
|
作者
Andersen, Reid [1 ]
Borgs, Christian [2 ]
Chayes, Jennifer [2 ]
Hopcroft, John [3 ]
Mirrokni, Vahab [4 ]
Teng, Shang-Hua [5 ]
机构
[1] Microsoft, One Microsoft Way, Redmond, WA 98052 USA
[2] Microsoft Res New England, Cambridge, MA 02142 USA
[3] Cornell Univ, Comp Sci Dept, Ithaca, NY 14853 USA
[4] NYC, Res Grp, Google Inc, New York, NY USA
[5] Boston Univ, Dept Comp Sci, Boston, MA USA
关键词
D O I
10.1080/15427951.2008.10129302
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Motivated by the problem of detecting link-spam, we consider the following graph- theoretic primitive: Given a webgraph G, a vertex v in G, and a parameter d. (0, 1), compute the set of all vertices that contribute to v at least a delta-fraction of v's PageRank. We call this set the delta-contributing set of v. To this end, we define the contribution vector of v to be the vector whose entries measure the contributions of every vertex to the PageRank of v. A local algorithm is one that produces a solution by adaptively examining only a small portion of the input graph near a specified vertex. We give an efficient local algorithm that computes an is an element of-approximation of the contribution vector for a given vertex by adaptively examining O(1/is an element of) vertices. Using this algorithm, we give a local approximation algorithm for the primitive defined above. Specifically, we give an algorithm that returns a set containing the delta-contributing set of v and at most O(1/delta) vertices from the delta/2-contributing set of v, and that does so by examining at most O(1/delta) vertices. We also give a local algorithm for solving the following problem: If there exist k vertices that contribute a rho-fraction to the PageRank of v, find a set of k vertices that contribute at least a (rho-is an element of)-fraction to the PageRank of v. In this case, we prove that our algorithm examines at most O(k/is an element of) vertices.
引用
收藏
页码:23 / 45
页数:23
相关论文
共 50 条
  • [1] Local computation of PageRank contributions
    Andersen, Reid
    Borgs, Christian
    Chayes, Jennifer
    Hopcraft, John
    Mirrokni, Vahab S.
    Teng, Shang-Hua
    ALGORITHMS AND MODELS FOR THE WEB-GRAPH, 2007, 4863 : 150 - +
  • [2] Revisiting Local Computation of PageRank: Simple and Optimal
    Wang, Hanzhi
    Wei, Zhewei
    Wen, Ji-Rong
    Yang, Mingji
    PROCEEDINGS OF THE 56TH ANNUAL ACM SYMPOSIUM ON THEORY OF COMPUTING, STOC 2024, 2024, : 911 - 922
  • [3] Parallelizing the computation of PageRank
    Wicks, John
    Greenwald, Amy
    ALGORITHMS AND MODELS FOR THE WEB-GRAPH, 2007, 4863 : 202 - +
  • [4] On Accelerating the PageRank Computation
    Osborne, Steve
    Rebaza, Jorge
    Wiggins, Elizabeth
    INTERNET MATHEMATICS, 2009, 6 (02) : 157 - 171
  • [5] Adaptive methods for the computation of PageRank
    Kamvar, S
    Haveliwala, T
    Golub, G
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2004, 386 : 51 - 65
  • [6] Efficient parallel computation of PageRank
    Kohlschuetter, Christian
    Chirita, Paul-Alexandru
    Nejdl, Wolfgang
    ADVANCES IN INFORMATION RETRIEVAL, 2006, 3936 : 241 - 252
  • [7] Lumping with acceleration for PageRank computation
    Mendes, I. R.
    Vasconcelos, P. B.
    2014 14TH INTERNATIONAL CONFERENCE ON COMPUTATIONAL SCIENCE AND ITS APPLICATIONS (ICCSA), 2014, : 221 - 224
  • [8] A novel approximate PageRank computation: QEGauss-Seidel PageRank
    Srivastava A.K.
    Srivastava M.
    International Journal of Information Technology, 2022, 14 (2) : 681 - 691
  • [9] An improved computation of the PageRank algorithm
    Kim, SJ
    Lee, SH
    ADVANCES IN INFORMATION RETRIEVAL, 2002, 2291 : 73 - 85
  • [10] PageRank computation using PC cluster
    Rungsawang, A
    Manaskasemsak, B
    RECENT ADVANCES IN PARALLEL VIRTUAL MACHINE AND MESSAGE PASSING INTERFACE, 2003, 2840 : 152 - 159