SUB-COLORING AND HYPO-COLORING INTERVAL GRAPHS

被引:1
|
作者
Gandhi, Rajiv [1 ]
Greening, Bradford, Jr. [1 ]
Pemmaraju, Sriram [2 ]
Raman, Rajiv [3 ]
机构
[1] Rutgers Univ Camden, Dept Comp Sci, Camden, NJ 08102 USA
[2] Univ Iowa, Dept Comp Sci, Iowa City, IA 52242 USA
[3] Max Planck Inst Informat, Saarbrucken, Germany
基金
美国国家科学基金会;
关键词
Sub-coloring; hypo-coloring; interval graphs; NP-complete; approximation algorithm;
D O I
10.1142/S1793830910000693
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study the sub-coloring and hypo-coloring problems on interval graphs. These problems have applications in job scheduling and distributed computing and can be used as "subroutines"for other combinatorial optimization problems. In the subcoloring problem, given a graph G, we want to partition the vertices of G into minimum number of sub-color classes, where each sub-color class induces a union of disjoint cliques in G. In the hypo-coloring problem, given a graph G, and integral weights on vertices, we want to find a partition of the vertices of G into sub-color classes such that the sum of the weights of the heaviest cliques in each sub-color class is minimized. We present a "forbidden subgraph"characterization of graphs with sub-chromatic number k and use this to derive a 3-approximation algorithm for sub-coloring interval graphs. For the hypocoloring problem on interval graphs, we first show that it is NP-complete, and then via reduction to the max-coloring problem, show how to obtain an O( log n)-approximation algorithm for it.
引用
收藏
页码:331 / 345
页数:15
相关论文
共 50 条
  • [1] Sub-coloring and Hypo-coloring Interval Graphs
    Gandhi, Rajiv
    Greening, Bradford, Jr.
    Pemmaraju, Sriram
    Raman, Rajiv
    GRAPH-THEORETIC CONCEPTS IN COMPUTER SCIENCE, 2010, 5911 : 122 - +
  • [2] On interval Δ-coloring of bipartite graphs
    A. M. Magomedov
    Automation and Remote Control, 2015, 76 : 80 - 87
  • [3] On interval Δ-coloring of bipartite graphs
    Magomedov, A. M.
    AUTOMATION AND REMOTE CONTROL, 2015, 76 (01) : 80 - 87
  • [4] Approximating interval coloring and max-coloring in chordal graphs
    Pemmaraju, SV
    Penumatcha, S
    Raman, R
    EXPERIMENTAL AND EFFICIENT ALGORITHMS, 2004, 3059 : 399 - 416
  • [5] Max-Coloring and Online Coloring with Bandwidths on Interval Graphs
    Pemmaraju, Sriram V.
    Raman, Rajiv
    Varadarajan, Kasturi
    ACM TRANSACTIONS ON ALGORITHMS, 2011, 7 (03)
  • [6] Approximating interval coloring and max-coloring in chordal graphs
    Pemmaraju, Sriram V.
    Penumatcha, Sriram
    Raman, Rajiv
    Lect. Notes Comput. Sci., 1600, (399-416):
  • [7] INTERVAL INCIDENCE COLORING OF SUBCUBIC GRAPHS
    Malafiejska, Anna
    malafiejski, Michal
    DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2017, 37 (02) : 427 - 441
  • [8] Interval incidence coloring of bipartite graphs
    Janczewski, Robert
    Malafiejska, Anna
    Malafiejski, Michal
    DISCRETE APPLIED MATHEMATICS, 2014, 166 : 131 - 140
  • [9] On the Sum Coloring Problem on Interval Graphs
    S. Nicoloso
    M. Sarrafzadeh
    X. Song
    Algorithmica, 1999, 23 : 109 - 126
  • [10] Coloring fuzzy circular interval graphs
    Eisenbrand, Friedrich
    Niemeier, Martin
    EUROPEAN JOURNAL OF COMBINATORICS, 2012, 33 (05) : 893 - 904