PROPERTIES OF AN ALTERNATE LAX DESCRIPTION OF THE KDV HIERARCHY

被引:5
|
作者
BRUNELLI, JC
DAS, A
机构
关键词
D O I
10.1142/S0217732395001022
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We study systematically the Lax description of the KdV hierarchy in terms of an operator which is the geometrical recursion operator. We formulate the Lax equation for the nth how and construct the Hamiltonians which lead to commuting flows. In this formulation, the recursion relation between the conserved quantities follows naturally. We give a simple and compact definition of all the Hamiltonian structures of the theory which are related through a power law.
引用
收藏
页码:931 / 939
页数:9
相关论文
共 50 条
  • [21] The KdV hierarchy in optics
    Horsley, S. A. R.
    JOURNAL OF OPTICS, 2016, 18 (08)
  • [22] On generalized Lax equation of the Lax triple of KP Hierarchy
    Wang, Xiao-Li
    Yu, Lu
    Yang, Yan-Xin
    Chen, Min-Ru
    JOURNAL OF NONLINEAR MATHEMATICAL PHYSICS, 2015, 22 (02) : 194 - 203
  • [23] On generalized Lax equation of the Lax triple of KP Hierarchy
    Xiao-Li Wang
    Lu Yu
    Yan-Xin Yang
    Min-Ru Chen
    Journal of Nonlinear Mathematical Physics, 2015, 22 : 194 - 203
  • [24] On generalized Lax equation of the Lax triple of mKP hierarchy
    Li, Chong
    Shi, Lin-Jie
    Wang, Xiao-Li
    Wang, Na
    Chen, Min-Ru
    INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2020, 35 (20):
  • [25] BI-HAMILTONIAN FORMULATION OF A FINITE-DIMENSIONAL INTEGRABLE SYSTEM REDUCED FROM A LAX HIERARCHY OF THE KDV
    BLASZAK, M
    BASARABHORWATH, P
    PHYSICS LETTERS A, 1992, 171 (1-2) : 45 - 51
  • [26] The second Painleve hierarchy and the stationary KdV hierarchy
    Joshi, N
    PUBLICATIONS OF THE RESEARCH INSTITUTE FOR MATHEMATICAL SCIENCES, 2004, 40 (03) : 1039 - 1061
  • [27] The relation between the Toda hierarchy and the KdV hierarchy
    Zeng, YB
    Lin, RL
    Cao, X
    PHYSICS LETTERS A, 1999, 251 (03) : 177 - 183
  • [28] LAX CONJECTURE ABOUT THE EIGENSPEED OF THE KDV EQUATION
    XU, BQ
    WANG, YJ
    SHAO, CG
    JOURNAL OF MATHEMATICAL PHYSICS, 1988, 29 (02) : 347 - 352
  • [29] GENERALIZED BOUSSINESQ EQUATION AND KdV EQUATION——PAINLEVE PROPERTIES,BACKLUND TRANSFORMATIONS AND LAX PAIRS
    楼森岳
    Science China Mathematics, 1991, (09) : 1098 - 1108
  • [30] GENERALIZED BOUSSINESQ EQUATION AND KdV EQUATION——PAINLEVE PROPERTIES,BACKLUND TRANSFORMATIONS AND LAX PAIRS
    楼森岳
    ScienceinChina,SerA., 1991, Ser.A.1991 (09) : 1098 - 1108