NONINTEGRABILITY OF THE MIXMASTER UNIVERSE

被引:16
|
作者
CHRISTIANSEN, F
RUGH, HH
RUGH, SE
机构
[1] INST HAUTES ETUD SCI,F-91440 BURES SUR YVETTE,FRANCE
[2] UNIV COPENHAGEN,NIELS BOHR INST,DK-2100 COPENHAGEN O,DENMARK
来源
关键词
D O I
10.1088/0305-4470/28/3/019
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We comment on an analysis by Contopoulos et al which demonstrates that the governing six-dimensional Einstein equations for the mixmaster spacetime metric pass the ARS or reduced Painleve test. We note that this is the case irrespective of the value, I, of the generating Hamiltonian which is a constant of motion. For I < 0 we find numerous closed orbits with two unstable eigenvalues strongly indicating that two additional first integrals apart from the Hamiltonian cannot exist and thus that the system, at least for this case, is very probably not integrable. In addition, we present numerical evidence that the average Lyapunov exponent nevertheless vanishes. The model is thus a very interesting example of a Hamiltonian dynamical system, which is probably non-integrable yet passes the reduced Painleve test.
引用
收藏
页码:657 / 667
页数:11
相关论文
共 50 条
  • [21] SCALAR WAVES IN MIXMASTER UNIVERSE
    HU, BL
    BULLETIN OF THE AMERICAN PHYSICAL SOCIETY, 1972, 17 (04): : 450 - &
  • [22] SIZE OF A BOUNCING MIXMASTER UNIVERSE
    BARROW, JD
    MATZNER, RA
    PHYSICAL REVIEW D, 1980, 21 (02): : 336 - 340
  • [23] The Mixmaster Universe in Five Dimensions
    Paul Halpern
    General Relativity and Gravitation, 2003, 35 : 251 - 261
  • [24] Description of statistical properties of the mixmaster universe
    Kirillov, AA
    Montani, G
    PHYSICAL REVIEW D, 1997, 56 (10): : 6225 - 6229
  • [25] PAINLEVE ANALYSIS FOR THE MIXMASTER UNIVERSE MODEL
    CONTOPOULOS, G
    GRAMMATICOS, B
    RAMANI, A
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1993, 26 (21): : 5795 - 5799
  • [26] Spectral properties of the quantum Mixmaster universe
    Bergeron, Herve
    Czuchry, Ewa
    Gazeau, Jean-Pierre
    Malkiewicz, Przemyslaw
    PHYSICAL REVIEW D, 2017, 96 (04)
  • [27] THE LAST REMAKE OF THE MIXMASTER UNIVERSE MODEL
    CONTOPOULOS, G
    GRAMMATICOS, B
    RAMANI, A
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1995, 28 (18): : 5313 - 5322
  • [28] Smooth quantum dynamics of the mixmaster universe
    Bergeron, Herve
    Czuchry, Ewa
    Gazeau, Jean-Pierre
    Malkiewicz, Przemyslaw
    Piechocki, Wlodzimierz
    PHYSICAL REVIEW D, 2015, 92 (06):
  • [29] Quantum Mixmaster as a Model of the Primordial Universe
    Bergeron, Herve
    Czuchry, Ewa
    Gazeau, Jean Pierre
    Malkiewicz, Przemyslaw
    UNIVERSE, 2020, 6 (01)
  • [30] ALTERNATIVE DESCRIPTIONS OF THE DISCRETE MIXMASTER UNIVERSE
    ELSKENS, Y
    PHYSICAL REVIEW D, 1983, 28 (04): : 1033 - 1035