DISTINCT STEPS IN THE PENETRATION OF ADENYLATE-CYCLASE TOXIN OF BORDETELLA-PERTUSSIS INTO SHEEP ERYTHROCYTES - TRANSLOCATION OF THE TOXIN ACROSS THE MEMBRANE

被引:0
|
作者
ROGEL, A [1 ]
HANSKI, E [1 ]
机构
[1] HEBREW UNIV JERUSALEM,HADASSAH MED SCH,DEPT CLIN MICROBIOL,IL-91010 JERUSALEM,ISRAEL
关键词
D O I
暂无
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Adenylate cyclase (AC) toxin from Bordetella pertussis penetrates eukaryotic cells and upon activation by calmodulin generates unregulated levels of intracellular cAMP. The process of toxin penetration into sheep erythrocytes was resolved into three consecutive steps including insertion, translocation, and intracellular cleavage. Insertion of the toxin into the cell membrane occurred over a wide temperature range (4-36-degrees-C). In contrast, translocation of the toxin, i.e. transfer of the NH2-terminal catalytically active fragment across the membrane, occurred only above 20-degrees-C and was highly temperature-dependent. While a single exposure of the toxin to Ca2+ was sufficient for its insertion into the plasma membrane, toxin translocation required exogenous Ca2+ at mM concentrations. Translocation was not affected by pretreatment of cells with trypsin, N-ethylmaleimide, and sodium carbonate at alkaline PH. The NH2-terminal fragment of the toxin was cleaved in the cell releasing the 45-kDa active AC into the cytosol. The cleavage was blocked by treatment of cells with N-ethylmaleimide. It is hypothesized that the COOH-terminal portion of the toxin creates in the membrane a channel through which the NH2-terminal fragment is translocated.
引用
收藏
页码:22599 / 22605
页数:7
相关论文
共 50 条