HIGH-ORDER ACCURATE VORTEX METHODS WITH EXPLICIT VELOCITY KERNELS

被引:188
|
作者
BEALE, JT [1 ]
MAJDA, A [1 ]
机构
[1] UNIV CALIF BERKELEY,DEPT MATH,BERKELEY,CA 94720
关键词
D O I
10.1016/0021-9991(85)90176-7
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
引用
收藏
页码:188 / 208
页数:21
相关论文
共 50 条
  • [41] Arbitrary High-Order Explicit Hybridizable Discontinuous Galerkin Methods for the Acoustic Wave Equation
    Svenja Schoeder
    Martin Kronbichler
    Wolfgang A. Wall
    Journal of Scientific Computing, 2018, 76 : 969 - 1006
  • [42] Arbitrary High-Order Explicit Hybridizable Discontinuous Galerkin Methods for the Acoustic Wave Equation
    Schoeder, Svenja
    Kronbichler, Martin
    Wall, Wolfgang A.
    JOURNAL OF SCIENTIFIC COMPUTING, 2018, 76 (02) : 969 - 1006
  • [43] High-Order Time-Integration Schemes with Explicit Time-Splitting Methods
    Park, Sang-Hun
    Lee, Tae-Young
    MONTHLY WEATHER REVIEW, 2009, 137 (11) : 4047 - 4060
  • [44] High-order explicit-implicit numerical methods for nonlinear anomalous diffusion equations
    F. Zeng
    C. Li
    F. Liu
    The European Physical Journal Special Topics, 2013, 222 : 1885 - 1900
  • [45] High-order explicit local time-stepping methods for damped wave equations
    Grote, Marcus J.
    Mitkova, Teodora
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2013, 239 : 270 - 289
  • [46] High-order polarization vortex spatial solitons
    Zhang, Bingzhi
    Wang, Hongcheng
    Luo, Gaoyong
    Man, Wenqing
    Zheng, Yanhua
    PHYSICS LETTERS A, 2012, 376 (45) : 3051 - 3056
  • [47] Generation of Intense High-Order Vortex Harmonics
    Zhang, Xiaomei
    Shen, Baifei
    Shi, Yin
    Wang, Xiaofeng
    Zhang, Lingang
    Wang, Wenpeng
    Xu, Jiancai
    Yi, Longqiong
    Xu, Zhizhan
    PHYSICAL REVIEW LETTERS, 2015, 114 (17)
  • [48] High-order mixed vortex beam generator
    Wang, Donghui
    Feng, Chengcheng
    Meng, Lingzhi
    Wang, Hongye
    Yuan, Libo
    OPTICS EXPRESS, 2023, 31 (25) : 42218 - 42229
  • [49] Globalized matrix-explicit Newton-GMRES for the high-order accurate solution of the Euler equations
    Michalak, Christopher
    Ollivier-Gooch, Carl
    COMPUTERS & FLUIDS, 2010, 39 (07) : 1156 - 1167
  • [50] Compact high-order accurate nonlinear schemes
    Deng, XG
    Maekawa, H
    JOURNAL OF COMPUTATIONAL PHYSICS, 1997, 130 (01) : 77 - 91