STABILITY FOR KORTEWEG-DE VRIES EQUATION

被引:23
|
作者
MCKEAN, HP [1 ]
机构
[1] NYU,COURANT INST MATH SCI,NEW YORK,NY 10012
关键词
D O I
10.1002/cpa.3160300307
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
引用
收藏
页码:347 / 353
页数:7
相关论文
共 50 条
  • [31] Basic motions of the Korteweg-de Vries equation
    Kovalyov, M.
    Nonlinear Analysis, Theory, Methods and Applications, 1998, 31 (5-6): : 599 - 619
  • [32] Computability of solutions of the Korteweg-de Vries equation
    Gay, W
    Zhang, BY
    Zhong, N
    MATHEMATICAL LOGIC QUARTERLY, 2001, 47 (01) : 93 - 110
  • [33] ANALYSIS OF A MODIFIED KORTEWEG-DE VRIES EQUATION
    LEO, M
    LEO, RA
    SOLIANI, G
    PROGRESS OF THEORETICAL PHYSICS, 1979, 62 (06): : 1475 - 1466
  • [34] On the singular solutions of the Korteweg-de Vries equation
    S. I. Pokhozhaev
    Mathematical Notes, 2010, 88 : 741 - 747
  • [35] MODIFIED KORTEWEG-DE VRIES EQUATION IN ELECTROHYDRODYNAMICS
    PERELMAN, TL
    FRIDMAN, AK
    ELYASHEV.MM
    ZHURNAL EKSPERIMENTALNOI I TEORETICHESKOI FIZIKI, 1974, 66 (04): : 1316 - 1323
  • [36] Solutions to the modified Korteweg-de Vries equation
    Zhang, Da-Jun
    Zhao, Song-Lin
    Sun, Ying-Ying
    Zhou, Jing
    REVIEWS IN MATHEMATICAL PHYSICS, 2014, 26 (07)
  • [37] Basic motions of the Korteweg-de Vries equation
    Kovalyov, M
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1998, 31 (5-6) : 599 - 619
  • [38] The Korteweg-de Vries equation in a cylindrical pipe
    V. A. Rukavishnikov
    O. P. Tkachenko
    Computational Mathematics and Mathematical Physics, 2008, 48 : 139 - 146
  • [39] Asymptotic stability of a nonlinear Korteweg-de Vries equation with critical lengths
    Chu, Jixun
    Coron, Jean-Michel
    Shang, Peipei
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2015, 259 (08) : 4045 - 4085
  • [40] Stability analysis of a Korteweg-de Vries equation with saturated boundary feedback
    Parada, Hugo
    IFAC PAPERSONLINE, 2022, 55 (26): : 1 - 6