ON RESOLVING THE MULTIPLICITY OF THE BRANCHING RULE GL(2K+1,C)DOWN-ARROW-SO(2K+1,C)

被引:0
|
作者
LEUNG, EY
机构
[1] Harrisburg Area Commun. Coll., Lebanon, PA
来源
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL | 1995年 / 28卷 / 07期
关键词
D O I
10.1088/0305-4470/28/7/013
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We consider the multiplicity problem of the branching rule GL(2k+1, C) down arrow SO(2k+1, C). Finite-dimensional irreducible representations of GL(2k+1, C) are realized as right translations on subspaces of the holomorphic Hilbert (Bargmann) spaces of q x (2k+1) complex variables. Maps are exhibited which carry an irreducible representation of SO(2k+1, C) into these subspaces. An algebra of commuting operators is constructed. Eigenvalues and eigenvectors of certain of these operators can then be used to resolve the multiplicity in the branching rule.
引用
收藏
页码:1909 / 1913
页数:5
相关论文
共 50 条
  • [21] Powerful numbers in (1k+1)(2k+1) ... (nk+1)
    Zhang Wenpeng
    Wang Tingting
    JOURNAL OF NUMBER THEORY, 2012, 132 (11) : 2630 - 2635
  • [22] ON THE ZETA-FUNCTION VALUES ZETA(2K+1), K=1,2,
    EWELL, JA
    ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 1995, 25 (03) : 1003 - 1012
  • [23] THE NON-EXTENSIBILITY OF D (-2k+1)-TRIPLES {1, k2, k2+2k-1}
    Peker, Bilge
    Dujella, Andrej
    Cenberci, Selin
    MISKOLC MATHEMATICAL NOTES, 2015, 16 (01) : 385 - 390
  • [24] Optimal Consecutive-k-out-of-(2k+1): G Cycle
    Ding-Zhu Du
    Frank K. Hwang
    Yunjae Jung
    Hung Q. Ngo
    Journal of Global Optimization, 2001, 19 : 51 - 60
  • [25] IRREDUCIBILITY OF THE MODULI SPACE FOR THE QUOTIENT SINGULARITY 1/2k+1 (k+1; 1; 2k)
    Jung, Seung-Jo
    BULLETIN OF THE KOREAN MATHEMATICAL SOCIETY, 2022, 59 (06) : 1409 - 1422
  • [26] Optimal consecutive-k-out-of-(2k+1):: G cycle
    Du, DZ
    Hwang, FK
    Jung, Y
    Ngo, HQ
    JOURNAL OF GLOBAL OPTIMIZATION, 2001, 19 (01) : 51 - 60
  • [27] COMPLEX HOMOGENEOUS SPACES OF LIE GROUP SO(2K+1,21+1)
    MALYSEV, FM
    MATHEMATICS OF THE USSR-IZVESTIYA, 1976, 10 (04): : 763 - 782
  • [28] A note on the chromatic number of the square of Kneser graph K(2k+1, k)
    Kang, Jeong-Hyun
    Kaul, Hemanshu
    DISCRETE MATHEMATICS, 2020, 343 (0I)
  • [29] On the orbits of magnetized Kepler problems in dimension 2k+1
    Bai, Zhanqiang
    Meng, Guowu
    Wang, Erxiao
    JOURNAL OF GEOMETRY AND PHYSICS, 2013, 73 : 260 - 269
  • [30] 理想Imσ*2k+1的代数结构
    蒋国瑞
    科学通报, 1989, (05) : 392 - 392