Quaternionic Serret-Frenet Frames for Fuzzy Split Quaternion Numbers

被引:0
|
作者
Yormaz, Cansel [1 ]
Simsek, Simge [1 ]
Elmas, Serife Naz [1 ]
机构
[1] Pamukkale Univ, Dept Math, TR-20070 Denizli, Turkey
关键词
D O I
10.1155/2018/7215049
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We build the concept of fuzzy split quaternion numbers of a natural extension of fuzzy real numbers in this study. Then, we give some differential geometric properties of this fuzzy quaternion. Moreover, we construct the Frenet frame for fuzzy split quaternions. We investigate Serret-Frenet derivation formulas by using fuzzy quaternion numbers.
引用
收藏
页数:6
相关论文
共 41 条
  • [31] Algebraic techniques for eigenvalues and eigenvectors of a split quaternion matrix in split quaternionic mechanics
    Jiang, Tongsong
    Zhang, Zhaozhong
    Jiang, Ziwu
    COMPUTER PHYSICS COMMUNICATIONS, 2018, 229 : 1 - 7
  • [32] On singular value decomposition for split quaternion matrices and applications in split quaternionic mechanics
    Wang, Gang
    Jiang, Tongsong
    Vasil'ev, V. I.
    Guo, Zhenwei
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2024, 436
  • [33] SETTING THE α-CUT OF FUZZY QUATERNION NUMBERS THROUGH GRADUAL QUATERNION NUMBERS
    Sousa, Emmanuelly
    Santiago, Regivan
    UNCERTAINTY MODELLING IN KNOWLEDGE ENGINEERING AND DECISION MAKING, 2016, 10 : 220 - 225
  • [35] An efficient method for the split quaternion equality constrained least squares problem in split quaternionic mechanics
    Wang, Gang
    Jiang, Tongsong
    Zhang, Dong
    Vasil'ev, V. I.
    COMPUTATIONAL & APPLIED MATHEMATICS, 2023, 42 (06):
  • [36] An efficient method for the split quaternion equality constrained least squares problem in split quaternionic mechanics
    Gang Wang
    Tongsong Jiang
    Dong Zhang
    V. I. Vasil’ev
    Computational and Applied Mathematics, 2023, 42
  • [37] Type numbers of split orders of definite quaternion algebras
    Hasegawa, Y
    Hashimoto, K
    MANUSCRIPTA MATHEMATICA, 1995, 88 (04) : 525 - 534
  • [38] Rotation of Triangular Fuzzy Numbers via Quaternion
    Moura, Ronildo
    Bergamaschi, Flaulles
    Santiago, Regivan
    Bedregal, Benjamin
    2014 IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS (FUZZ-IEEE), 2014, : 2538 - 2543
  • [39] Algebraic techniques for least squares problem over generalized quaternion algebras: A unified approach in quaternionic and split quaternionic theory
    Wang, Gang
    Guo, Zhenwei
    Zhang, Dong
    Jiang, Tongsong
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2020, 43 (03) : 1124 - 1137
  • [40] Representing complex intuitionistic fuzzy set by quaternion numbers and applications to decision making
    Roan Thi Ngan
    Le Hoang Son
    Ali, Mumtaz
    Tamir, Dan E.
    Rishe, Naphtali D.
    Kandel, Abraham
    APPLIED SOFT COMPUTING, 2020, 87